
September 3, 2004 17:16 01103

Tutorials and Reviews

International Journal of Bifurcation and Chaos, Vol. 14, No. 8 (2004) 2525–2553
c© World Scientific Publishing Company

ENVELOPING SURFACES AND ADMISSIBLE

VELOCITIES OF HEAVY RIGID BODIES

IGOR N. GASHENENKO
Institute of Applied Mathematics and Mechanics of NAS of Ukraine,

Luxemburg Str. 74, Donetsk 83114, Ukraine
gashenenko@iamm.ac.donetsk.ua

PETER H. RICHTER
Institut für Theoretische Physik, University of Bremen,

Postfach 330 440, 28334 Bremen, Germany
prichter@physik.uni-bremen.de

Received March 11, 2003; Revised August 8, 2003

The general Euler-Poisson problem of rigid body motion is investigated. We study the three-
dimensional algebraic level surfaces of the first integrals, and their topological bifurcations.
The main result of this article is an analytical and qualitatively complete description of the
projections of these integral manifolds to the body-fixed space of angular velocities. We classify
the possible types of these invariant sets and analyze the dependence of their topology on the
parameters of the body and the constants of the first integrals. Particular emphasis is given
to the enveloping surfaces of the sets of admissible angular velocities. Their pre-images in the
reduced phase space induce a Heegaard splitting which lends itself for a general choice of complete
Poincaré surfaces of section, irrespective of whether or not the system is integrable.
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1. Introduction

The motion of rigid bodies is one of the more chal-
lenging topics in courses on classical mechanics, see
the textbook by Landau and Lifshitz [1958] for an
introduction. In these courses students are given the
impression that there are just two families of prob-
lems: Euler’s case of an asymmetric rigid body fixed
at its center of gravity, and the Lagrange case of a
symmetric body in a gravitational field, fixed to a
point on its symmetry axis (the “heavy spinning
top”). The integration of the corresponding equa-
tions of motion is possible in terms of elliptic func-
tions. It is not usually mentioned, however, that the
vast majority of problems — motion of a rigid body,
with one point held fixed, in a gravity field pointing
in the direction γ — is not integrable. The config-
uration space SO(3) has three degrees of freedom

(e.g. the Euler angles), but as a rule, energy h and
the vertical component l = 〈l, γ〉 of the angular
momentum vector l are the only constants of mo-
tion. Euler’s case is special in that 〈l, l〉 =: g2 is a
third, independent integral, and in Lagrange’s case
the third integral 〈l, r〉 =: ls derives from the sym-
metry with respect to rotation about the body’s
axis; here r is the vector connecting the fixed point
to the center of mass.

Traditionally, the equations of motion are writ-
ten in the Euler–Poisson form [Arnold, 1974]

Aω̇ = Aω × ω − γ × r , γ̇ = γ × ω , (1)

where the angular velocity vector ω =
(ω1, ω2, ω3) ∈ R

3 and the direction of gravity
γ = (γ1, γ2, γ3) ∈ R

3, both viewed from the
body fixed coordinate system of principal axes
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(e1, e2, e3), are considered as phase space vari-
ables. The three components of the tensor of inertia
A = diag(A1, A2, A3), and the three components
of the center of mass vector r = (r1, r2, r3) ∈ R

3

are fixed parameters. The angular momentum and
angular velocity are related by the identity l = Aω.

1.1. Energy surfaces and their

bifurcations

The six-dimensional phase space R
3(ω) × R

3(γ) is
effectively only four-dimensional because Eqs. (1)
have two “geometric” constants, or Casimir con-
stants. One is the length of the vector γ; hence
we may stick with the Poisson sphere S2(γ), de-
fined by 〈γ, γ〉 = 1. The other Casimir constant is
〈Aω, γ〉 = 〈l, γ〉 = l. As a consequence of these two
restrictions, the Euler–Poisson equations describe
motion in the four-dimensional cotangent bundle of
the Poisson sphere which is also called the reduced
phase space. From a practical point of view, it is
convenient to consider this phase space as embed-
ded in R

3(ω) × R
3(γ), and to treat L = 〈l, γ〉 and

I = 〈γ, γ〉 as integrals with constant values l and
1, respectively. Together with the energy integral,
we have three general constants of motion,

H =
1

2
〈Aω, ω〉 − 〈γ, r〉 = h ,

L = 〈Aω, γ〉 = l , I = 〈γ, γ〉 = 1 .
(2)

Each pair of values (h, l) defines a three-
dimensional compact subset of phase space,

E3

h,l = {H = h, L = l, I = 1}

⊂ R
3(ω) × R

3(γ) , (3)

which is invariant with respect to the phase flow.
The set E3

h,l is called a energy surface of the sys-

tem. For most values (h, l), the energy surface is
a smooth manifold; the exception are values (h, l)
for which E3

h,l contains points (ω, γ) where the

momentum map F : (ω, γ) 7→ (h, l) is singular,
rank(dF) < 2. The corresponding set of critical
values (h, l) is called the bifurcation set Σ of the
energy surface, for the given parameters A and r.
When (h, l) is varied across the bifurcation set, the
topological type of E3

h,l changes.1

A systematic way for finding points (ω, γ)
where the momentum map is critical, is to look for
situations where the equations

∂(H − µ1L − µ2I)

∂ω
= 0 ,

∂(H − µ1L − µ2I)

∂γ
= 0 ,

(4)

allow for real solutions µ1, µ2. From the first equa-
tion we infer that γ and ω must be collinear, hence
γ̇ = 0. Using the second equation it is straightfor-
ward to show that also ω̇ = 0. Thus we see that the
bifurcation set of the energy surface consists of val-
ues (h, l) where the Euler–Poisson equations have
stationary solutions, or relative equilibria.

Notice that Eqs. (1) do not describe the body’s
rotation about the space fixed vertical axis. The
corresponding angle ϕ is a S1-symmetry of the full
system and has been separated. It is obtained by
integration of

ϕ̇ =
γ1ω1 + γ2ω2

γ2

1
+ γ2

2

, (5)

once the solutions of (1) have been determined.
Relative equilibria are steady rotations ϕ̇ = const
about the vertical axis.

As usual in connection with the separation of
an angular variable, the part of the kinetic energy
which is associated with the ϕ-motion, l2/2〈Aγ, γ〉,
depends only on the configurational variables. It
is called the “centrifugal potential”. Together with
the gravitational potential it defines the effective
potential

Ul =
l2

2〈Aγ, γ〉 − 〈r, γ〉 , (6)

of the reduced system. It was proven in [Tatarinov,
1973] that the relative equilibria are in one-to-one
correspondence with the critical points of the effec-
tive potential Ul.

The tensor of inertia A and center of mass po-
sitions r define a six-dimensional set, but one of
the ri may be used for scaling lengths, and one of
the Ai for scaling time (or energy). Unless r = 0
and A1 = 0, we adopt the conventions |r| = 1 and
A = diag(1, α, β). Hence the set P of essential pa-
rameters is four-dimensional. Remember that the
moments of inertia are restricted by α + β > 1,
α + 1 > β, β + 1 > α, see Fig. 13.

1In the three special cases (Euler, Lagrange, Kovalevskaya) where a third integral J = j exists, the momentum map has a
three-dimensional range R

3(h, l, j), and the bifurcation analysis becomes more involved, see [Dullin, 1994; Richter et al., 1997]
for details on the Kovalevskaya case.
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Euler’s case, r = 0 and A = (1, α, β), defines
a two-dimensional subset of P. Lagrange’s case may
be characterized as e = (1, 0, 0) and α = β > 1/2,
which defines a one-dimensional subset of P. There
exists one additional integrable case, the famous
Kovalevskaya top [Kowalevski, 1890] where A =
(1, 1, 1

2
) and r = (cos ε, sin ε, 0); this is again a

one-dimensional subset of the four-dimensional pa-
rameter space (but ε = 0 is no restriction due to
the symmetry in A, hence there is really only one
Kovalevskaya top).

For all other sets of values A and r, the Euler–
Poisson equations are nonintegrable, except for spe-
cial values of (h, l). This was established in a long
series of investigations, going back to Poincaré’s
seminal book [Poincaré, 1892, Vol. 1, Chap. V,
Sec. 86]. Important results in this line of research
were obtained by Lyapunov [1954] who demon-
strated the nonexistence of general solutions in
terms of single-valued functions of time, except for
the three known integrable cases; by Husson and
Liouville [Arkhangelskii, 1977] who proved the
nonexistence of new algebraic integrals if h and l
are arbitrary constants; by Kozlov [1980, 1995] who
established the nonexistence of new analytical inte-
grals via perturbation of the Euler case; by Dovbysh
[1990] who showed the same for perturbations of the
Lagrange case; and by Ziglin [1983] who demon-
strated the nonexistence of integrals in terms of
meromorphic functions of the phase variables. All
these results cover only certain aspects of the gen-
eral problem. Kozlov [1995] had characterized the
situation as follows: “For the time being, the ques-
tion concerning the existence of an additional in-
tegral of the equations of rotation of a heavy rigid
body (in the real domain and for an arbitrary dis-
tribution of masses) remains open.”

Nevertheless, a number of invariant features
can be identified for the dynamical system (1).
As mentioned already, the reduced phase space at
given l is foliated by three-dimensional surfaces
E3

h,l of constant energy. As their topological struc-
ture changes in connection with relative equilibria,
see Appendix 5C in [Arnold, 1974] and Sec. 3.3.4
in [Arnold et al., 1985], it is important to have
a survey on these special types of motion. The
study of this problem was initiated by Iacob [1971],
Katok [1972], and Tatarinov [1974], and will be ex-
tended in Sec. 2 below. The projections of E 3

h,l to the

Poisson sphere S2(γ) and to the space R
3(ω) of an-

gular velocities are related invariant features; they
will be denoted as Uh,l and Vh,l, respectively. Uh,l is
the set of accessible points γ for given (h, l),

Uh,l = {Ul(γ) ≤ h} ⊂ S2(γ) . (7)

Its topological nature is used to determine the
topology of E3

h,l. The sets Vh,l, and their enveloping
surfaces ∂Vh,l, are the main subject of this paper;
to our knowledge, these objects have not been stud-
ied before in generality. Our results are presented in
Sec. 6.

As shown in Secs. 3 and 4, the surfaces ∂Vh,l

are projections to ω-space of the two-dimensional
sets P2

h,l, defined by local extrema of the squared
angular momentum,

P2

h,l =

{

dl2

dt
= 0

}

⊂ E3

h,l . (8)

Since l2 is a bounded function on E3

h,l this condi-
tion defines a complete Poincaré surface of section
in the sense of [Dullin & Wittek, 1995]. It divides
the energy surface into disjoint parts with increas-
ing and decreasing l2, and the phase space flow
keeps changing between the two2 through intersec-
tions with P2

h,l. Hence, irrespective of whether or
not the Euler–Poisson equations are integrable, the
surfaces P2

h,l provide a convenient setting for the

definition of Poincaré maps. Their projections Ũh,l

to γ-space, and ∂Vh,l to ω-space, are also convenient
because Propositions 4.1 and 6.1 establish the fol-
lowing nice properties: except at points γ = ±r/|r|,
the projection P2

h,l → Ũh,l is 2:1, while the projec-

tion P2

h,l → ∂Vh,l is 1:1 except where Aω is collinear
with r. The two sheets of the projection to Uh,l

must be distinguished, as usual in Poincaré maps,
by an extra condition; here this could be the choice
of sign of d2l2/dt2. Remark: in neither projection is
the Poincaré map area preserving, but this does not
affect its usefulness.

From these considerations it should be clear
that the surfaces P2

h,l are of particular interest for a
general study of rigid body dynamics. Their bifur-
cation sets Σ̃ are therefore of central concern in the
present paper. The extra condition in (8) makes Σ̃
richer than the bifurcation set Σ of E 3

h,l. We show

in Sec. 4 that Σ̃ contains Σ and, in addition, the
lines defined in (31) and (33). Note, however, that

2The Euler case is an exception because l
2 is a constant of the motion.
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these lines contribute a nonempty difference Σ̃\Σ
only if the center of gravity r does not lie on one of
the principal axes.

The projections Ũh,l are singular at points γ =
±r/|r|, and ∂Vh,l at points where the angular mo-
mentum is collinear with r. This induces artificial
bifurcations in the projections when the number of
singular points changes, see (49).

As an introduction to the main part of the
paper, we discuss the familiar cases of Euler and
Lagrange, without paying much attention to their
“extra integrals” g2 or ls. Of course, some of the
more delicate features are lacking in these cases;
there is no difference between Σ and Σ̃, or between
Uh,l and Ũh,l. In Euler’s case there is even no distinc-
tion between Vh,l and ∂Vh,l. Nevertheless, a study
of these cases helps develop an understanding for
the new view on rigid body dynamics.

1.2. Euler’s case

With r = 0 the effective potential is simply

Ul =
l2

2〈Aγ, γ〉 . (9)

The middle part of Fig. 1 gives an illustration in
terms of colors: low values of Ul in the yellow region,
high values in the green. The critical points of Ul(γ)
are easily determined (we assume A1 > A2 > A3):
minima Ul = l2/2A1 at γ = ±e1, saddle points at
γ = ±e2 with Ul = l2/2A2, maxima Ul = l2/2A3

at γ = ±e3. The black graph in the right part of
the figure is a schematic representation of the po-
tential. Each point corresponds to one equipotential
line, and the graph shows how they are related (such
graphs are called Reeb graphs [Bolsinov & Fomenko,
1999]); energy increasing from bottom to top, the

two branches of level lines in the yellow region join
at the separatrix and turn into two green branches.

The left part of Fig. 1 shows the l ≥ 0 half
of the bifurcation diagram (for l ≤ 0 one gets the
mirror image of this picture; the line l = 0 is not a
critical line). The critical lines hi = l2/2Ai separate
regions with different topology of E 3

h,l. No motion

is possible for energies smaller than l2/2A1. The
line h = l2/2A1 corresponds to two stable steady
rotations: both with l pointing in the γ-direction,
g2 = l2, but l = le1 in one case, l = −le1 in the
other. As h increases at constant l, two (yellow)
disks of γ-values around ±e1 become admissible.
For each interior point of these disks, the kinetic en-
ergy of the reduced system defines an S1-manifold
as admissible end points of vectors ω; on the bound-
aries h = Ul(γ), the only possibility for ω is to be
collinear with γ. We conclude that E 3

h,l consists of

two disjoint fiber bundles with disks D2 ∼ S2\D2 as
their bases and circles as fibers, shrinking to points
at the boundaries of the disks. This is characteristic
of three-spheres, hence E3

h,l ∼ 2S3, cf. [Smale, 1970;
Bolsinov et al., 1996] for this kind of reasoning.

When energy increases beyond h2, with maxi-
mum level of Ul in the green region, the accessible
part of the Poisson sphere is an annulus D2\D2 ∼
S2\2D2, the corresponding topological type of the
energy surface S1 × S2. Finally, for h > h3, the
entire γ-sphere S2 is accessible, and since every γ

carries a fiber of type S1, the energy surface is a
Poincaré sphere, or the projective space RP 3.

Once the energy surfaces are determined from
their projections to S2(γ), we may also ask for their
projections Vh,l to the space R

3(ω). This is espe-
cially easy in the Euler case where the ω-equation
Aω̇ = Aω × ω is independent of the γ-motion

Fig. 1. (Left) Bifurcation diagram for Euler’s case r = (0, 0, 0) with (A1, A2, A3) = (2, 1.5, 1). The horizontal axis is h, the
vertical l. (Middle) Effective potential Ul(γ) on the Poisson sphere, for given l. The major axes e1, e2, e3 point backward,
upward and to the right, respectively. (Right) Reeb graph representation of the effective potential. Each point of the black
graph corresponds to an equipotential line; the energy increases along the vertical. Colors indicate the topological type of E 3

h,l.
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Fig. 2. Admissible angular velocities ω for given (h, l) in the Euler case (A1, A2, A3) = (2, 1.5, 1). The values (h, l) are,
from left to right, (0.33, 1), (0.42, 1), (0.6, 1). In the two pictures on right, one quarter of the ellipsoid has been cut away to
give a better impression of ∂Vh,l.

and hence of l. Vh,l is therefore a two-dimensional
set which must be contained in the ellipsoid de-
fined by 〈Aω, ω〉 = 2h. Later we shall see that if
r 6= 0, the corresponding projections Vh,l are three-
dimensional sets so that it becomes meaningful to
ask for their enveloping surfaces ∂Vh,l. In Euler’s
case the issue is trivial. However, it is not trivial
to ask which part of the ellipsoid is admissible to
motion with given values (h, l).

A special feature of the Euler top is the ex-
tra integral g2 = 〈Aω, Aω〉 which defines another
ellipsoid in ω-space. The intersections of the two el-
lipsoids of constant h and g2 are invariant lines of
the ω-motion. These lines can be used to address
the question of our interest: given a pair of values
(h, l), which points in ω-space are then admissible?
Assume first that (h, l) is taken from the yellow re-
gion in the bifurcation diagram. The smallest pos-
sible value of g2 is obtained when the space-fixed
vector l points in the directions of γ or −γ: then
g2 = l2. The invariant lines are two S1-curves en-
circling the e1-axis in ω-space. All higher values of
g2 up to g2 = 2A1h can be realized by adjusting
the angle between l and γ such that 〈l, γ〉 remains
equal to l. The union of the corresponding lines in
ω-space is the set of two disks shown in the left part
of Fig. 2. Together they are Vh,l = ∂Vh,l.

For (h, l) taken from the green region of the bi-
furcation diagram, the smallest possible g2 defines
two S1-curves encircling the e3-direction. Again, all
higher values up to g2 = 2A1h can be realized by
bending l sufficiently away from the direction of
gravity. The resulting Vh,l = ∂Vh,l is an annulus,
see the middle part of Fig. 2.

When energy is increased into the blue region,
all points on the energy ellipsoid in ω-space are ad-
missible for an appropriate value of g2 > 0, see the
right part of Fig. 2.

The general invariance of l2 is a unique feature
of the Euler case. In almost all other cases of rigid
body motion in a gravitational field, the torques
associated with r 6= 0 make the angular momen-
tum vacillate between local minima and maxima
of l2 (for exceptions see the last sentence of Sec. 3).
The admissible points in ω-space then form a three-
dimensional set Vh,l.

1.3. Lagrange’s case

The Lagrange case is considerably richer in the
structure of its energy surfaces and their projec-
tions to ω-space. Correspondingly, the calculations
are more involved and will not be presented in this
introductory chapter. We shall only illustrate the
kind of results that are obtained using the methods
of the subsequent sections. In line with the conven-
tions of Sec. 5, we assume A2 = A3 = αA1 and
r = e1 = (1, 0, 0). It has long been known [Os-
hemkov, 1991] that the effective potential Ul(γ),
and hence the bifurcation diagram Σ, possess differ-
ent structures in the three ranges I: 1/2 < α < 3/4,
II: 3/4 < α < 1, and III: α > 1, cf. the diagonal line
α = β in Fig. 13. With the procedures described in
Sec. 2, it is straightforward to evaluate the criti-
cal points of the potential (6), and to obtain the
three types of diagram shown in Fig. 3. Colors cor-
respond to topological types of energy surfaces E 3

h,l,
their changes indicate bifurcations.

The two pictures on left in Fig. 3 represent
the α-range I, corresponding to a disk-like (oblate)
mass distribution. The bifurcation diagram defines
four (h, l)-ranges corresponding to different topo-
logical types of energy surfaces: one three-sphere S3

(red), two disjoint three-spheres (yellow), the pro-
jective space RP 3 (blue), and the union of a three-
sphere with the direct product S1 × S2 (magenta).
These assertions are derived from an analysis of the
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Fig. 3. Bifurcation diagrams for the three types of Lagrange tops. From left to right: A1 = 2, α = 0.505 (α-range I); a
blow-up of the little window; A1 = 1.4, α = 0.757 (α-range II); A1 = 1, α = 1.5 (α-range III).

Fig. 4. Examples of Poisson spheres with contour lines of the effective potential Ul(γ). The point γ = e1 points backward
to the upper left. The three cases on left belong to the α-range I with α = 0.505. From left to right: l = 1.82 (values of the
potential increase from red to magenta to red), l = 1.85 (red to magenta to yellow), l = 2.1 (red to yellow). Picture on right:
α = 1.5 (range III), l = 3 (green to red).

effective potential (6) of which Fig. 4 gives four ex-
amples. (The situation of low l-values is omitted
there because in the color code used it would simply
be represented by a red sphere.) Let us explain some
details, and how the colors on the Poisson spheres
are related to the colors in Fig. 3.

Notice first that the effective potential on the
Poisson sphere

Ul(γ)|S2 =
l2

2A1(α + (1 − α)γ2

1
)
− γ1 (10)

depends on γ1 only; the equipotential lines are
circles γ1 = const. on the Poisson sphere. A
schematic view of their organization is given in
Fig. 5: each point of the black Reeb graph rep-
resents an equipotential circle, the value of Ul

increasing in the vertical direction. White dots cor-
respond to γ = e1, i.e. to “sleeping tops” in hang-
ing position, Ul = l2/2A1 − 1. Black dots represent
γ = −e1, i.e. “sleeping tops” in upright position,
Ul = l2/2A1 + 1; they may be absolute maxima,
relative maxima, or even relative minima.

The color of a point γ on the Poisson sphere
indicates the topological type of the energy surface
E3

h,l for h = Ul(γ). Let us discuss the different color
regimes. When h is larger than the absolute max-
imum of Ul(γ), at given l, the corresponding E 3

h,l

projects to the entire sphere S2; its topological type

is RP 3, and the color is blue. Given a red point (h, l)
in the bifurcation diagram, the projection Uh,l of
E3

h,l is a disk D2 ∼ S2\D2 on the γ-sphere which is
bounded by an equipotential line in the red region;
the corresponding type of E3

h,l is S3. For sufficiently

low values of l2, only the red and blue types of en-
ergy surfaces occur; cf. the left picture in Fig. 5.

For l-values in a small range around 1.8, see the
blow-up in Fig. 3, the potential Ul(γ) has a degener-
ate relative minimum (h = 1.807 for l = 1.82) along
the right black circle in the magenta region of the
leftmost picture in Fig. 4. With these values of h
and l, the Lagrange top is in a stable relative equi-
librium, rotating at a fixed inclination with respect
to the direction of gravity. With slightly higher val-
ues of h, there exists, in addition to the disk with
center at γ = e1, an annulus S2\2D2 of accessi-
ble γ-values around that circle; hence the energy
surface has two disjoint components: a three-sphere
and a direct product S1 ×S2 (magenta). As energy
increases towards h = 1.81825, a degenerate relative
maximum along the left black γ-circle is reached.
The annulus merges with the disk, forming a larger
disk, and the energy surface becomes again a single
three-sphere (red). The absolute maximum of Ul(γ)
is located at γ = −e1 (upright sleeping top). The
second picture from left in Fig. 5 shows how the
equipotential lines are connected.
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Fig. 5. Reeb graphs for effective potentials in the α-range I with (from left to right) l = 0, l = 1.82, l = 1.85, l = 2.1, and
α-range III with l = 3 (right). The white dots correspond to sleeping tops in hanging position γ = e1, black dots to sleeping
tops in upright position γ = −e1; colored dots indicate critical circles.

Next consider l = 1.85. Again, there exists a
critical circle, with a relative minimum of Ul, in
the magenta region, and an annulus of accessible
γ-values for h slightly higher. But before this annu-
lus has a chance to merge with the disk, its hole at
γ = −e1 closes (relative maximum at the upright
sleeping position) so that E3

h,l consists of two dis-

joint three-spheres (yellow). The transition to RP 3

(blue) is now via the critical circle in the center of
the yellow region of the Poisson sphere.

The last possibility in the α-range I is illus-
trated in the second images from right in Figs. 4
and 5. At sufficiently high l2, the upright sleeping
top γ = −e1 is a relative minimum of Ul, corre-
sponding to a stable motion. The absolute maxi-
mum is assumed along a critical circle. Hence the
sequence of accessible regions on the Poisson sphere,
as h increases, is D2, 2D2, S2, corresponding to en-
ergy surfaces S3, 2S3, RP 3.

Figure 3 shows that the α-range II is simpler
than I: the effective potential has only red and yel-
low regions, and there are no new types of behavior.
However, range III, corresponding to cigar shaped
(prolate) mass distributions, exhibits a new kind
of motion (green color). At sufficiently high values
of l2, the effective potential assumes its absolute
minimum not in e1 but along a circle of constant γ1,
corresponding to a kind of merry-go-round motion.
The accessible γ-region at low energy is therefore

an annulus, the energy surface of topological type
S1 × S2.

The main question addressed in this paper con-
cerns the projections Vh,l of the energy surfaces E3

h,l

to the space R
3(ω) of angular velocities. More pre-

cisely, we are concerned with the topological nature
of their envelopes ∂Vh,l; these are the projections
to ω-space of the submanifolds P2

h,l of E3

h,l where

l2 assumes an extremal value. We shall see that, in
general, the topology of P2

h,l and ∂Vh,l depends not

only on the topology of E3

h,l but also on details dis-
cussed in Secs. 4 and 6. For the Lagrange case, it
turns out that all manifolds P2

h,l are two-tori: sin-

gle T 2 in the red, blue and green regions, pairs of T 2

in the yellow and magenta regions. The projection
of P2

h,l to ω-space possesses, in general, up to three
singular points on the axis where l = Aω is collinear
with r. For the Lagrange case this means there may
be up to three singular points on the e1-axis, see
Fig. 7. Their number is 0 in the green region of the
bifurcation diagram, 1 for both components of ∂Vh,l

in the yellow region, 2 in the blue region, 1 and 0
for the components related to S3 and S1×S2 in the
magenta region.

The red region deserves special attention. It is
separated in two parts by the line h3 = 27l2/8A1,
0 ≤ h ≤ 3/2, see Eq. (49) and Fig. 6 where the
bifurcation sets Σ are shown for the same parame-
ters as in Fig. 3, together with the extra line (color

0

2

4

2 4

1.8

2

1.8 2 0

2

4

2 4 0

2

4

2 4

Fig. 6. Bifurcation sets Σ for the same parameters as in Fig. 3, plus the extra bifurcation line (49) for the surfaces ∂Vh,l

(magenta). The fat colored dots indicate the (h, l) values for which the six surfaces in Fig. 7 are drawn.
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Fig. 7. The six kinds of enveloping surfaces ∂Vh,l in ω-space, for Lagrange tops. The two red surfaces as well as the blue and
green are computed for A1 = 1, α = 1.5 (α-range III), the magenta and yellow surfaces for A1 = 2, α = 0.505 (α-range I). In
the upper row, the values (h, l) are (4.5, 3), (0.85, 0.3), (1.1, 0.3); in the lower row they are (3.1, 3), (1.851, 1.85), (2.307, 2.1).
The direction ω = e1 points to the left. All surfaces possess rotational symmetry with respect to e1; one quarter has been cut
away to make the inside visible.

magenta). This line is not related to singularities
of E3

h,l or P2

h,l; rather it reflects a singularity of the

projection. For values (h, l) in the red region to the
left or above the line, the surfaces ∂Vh, l have one
singular point; for (h, l) to right and below the line,
they have three, cf. the two red pictures in Fig. 7.

The envelopes enclose the regions of admissi-
ble angular velocities. Trajectories ω(t) remain in
Vh,l and are tangent to ∂Vh,l, where dl2/dt = 0.
The outer part of the envelopes corresponds to local
maxima of l2, the inner part to local minima. The
extra constant of motion ls = 〈l, r〉 of the Lagrange
case implies that the trajectories are restricted to
planes ω1 = ls/A1. The intersections of these planes
with ∂Vh,l are the invariant foliation of ∂Vh,l by pro-
jections of Liouville–Arnold tori from the reduced
phase space to ω-space.

1.4. General case: Outline of

the paper

The focus of mathematical research in rigid body
dynamics has always been on the integrable cases.
In recent years, considerable progress has been
made in the development of analytic and geometric
methods of their investigation. Fomenko’s scientific
school (see [Bolsinov & Fomenko, 1999] for a review)
has developed a “molecular” theory of topological
classification of integrable systems which allows us

to describe and compare dynamical systems in great
detail. To take the most prominent example: a deep
understanding of the Kovalevskaya system in all
its complexity has only recently been achieved. In
her original work, Kovalevskaya [Kowlevski, 1890]
proved its integrability and showed that it could
be solved in terms of theta functions; Kötter [1893]
pursued that kind of analysis in greater detail. More
qualitative analytic investigations were initiated by
Zhukovskii [Zhukovskii, 1896; Appelrot, 1940], but
a full description of the bifurcation diagram was
only given by Iacob [1971] and Kharlamov [1988].
On that basis, the action variables could be deter-
mined [Dullin, 1994; Dullin et al., 1994; Dullin et al.,
1998], and the Liouville foliations were described in
all detail [Bolsinov et al., 2000]. The dynamics of
the body in time could be formulated, on a basic
level, in terms of Lax pairs [Bobenko et al., 1989],
and a detailed description in primary Euler–Poisson
variables was given in [Gashenenko, 2000]. For a sur-
vey on the present state of affairs, we recommend
the Conference Proceedings [Kuznetzov & Nijhoff,
2000]. Klein and Sommerfeld [1910] had already dis-
cussed the idea of attacking the more general non-
integrable systems by interpolation of solutions for
the integrable cases. But in spite of all modern ad-
vancement, this is still hope rather than practice.

The present paper is an attempt to use ideas
from the theory of integrable systems and provide
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a basis for the study of arbitrary rigid body systems.
This is done in the spirit of the topological research
program that was initiated by Smale [1970]. The
program is based on Morse theory [Milnor, 1963]
and, when applied to the Euler–Poisson Eqs. (1),
suggests to first study the topology and bifurca-
tions of E3

h,l, and then to look for further invari-

ant sets on each separate energy surface (see also
[Abraham & Marsden, 1978; Lewis et al., 1992]).
We refer to [Smale, 1970; Tatarinov, 1973; McCord
et al., 1998; Bolsinov & Fomenko, 1999] as suc-
cessful examples where the program was applied to
diverse classical systems. Applications of Smale’s
constructive theory to rigid body dynamics were
developed in [Iacob, 1971; Katok, 1972; Tatarinov,
1974; Oshemkov, 1991]. Our contribution with this
paper is the analysis of the topology and the bi-
furcation scheme of the enveloping surfaces ∂Vh,l of
the natural projections Vh,l of E3

h,l ⊂ R
3(ω)×S2(γ)

to the space R
3(ω) of angular velocities. These sur-

faces are the loci of local extrema in the modulus of
the angular momenta |Aω|. Their pre-images P2

h,l

in E3

h,l are two-dimensional manifolds which we rec-
ommend as perhaps the best general choice for com-
plete Poincaré surfaces of section [Dullin & Wittek,
1995]. An application of this idea to the integrable
Kovalevskaya case was given earlier in [Gashenenko,
2000]. In the following, we extend it to the general
case of Eqs. (1), and give a number of examples for
illustration.

The paper is organized as follows. Section 2 re-
calls the construction in (h, l)-space of bifurcation
diagrams Σ of the energy surfaces E 3

h,l. The well-
known method is based on a study of the projec-
tions Uh,l of E3

h,l to the Poisson sphere S2(γ). The
essential task is to identify the relative equilibria of
the Euler–Poisson equations from the properties of
an effective potential. The brief Sec. 3 is a recollec-
tion of the Hess equations: the Euler–Poisson equa-
tions written in terms of the angular velocities only;
the variables γ have been eliminated in favor of the
integration constants. At this point it becomes pos-
sible to characterize the enveloping surface ∂Vh,l in
ω-space as the level set f(ω) = 0 of an explicitly
given function. Section 4 studies the pre-images P 2

h,l

in E3

h,l of the enveloping surfaces. It turns out that

the bifurcation diagram Σ̃ of its topological types
contains Σ and, in general, three additional lines
in the (h, l)-plane. The main tool for the deriva-
tion of these results is the projection Ũh,l of P2

h,l to
the Poisson sphere. We present examples where the

role of the additional bifurcation lines is made clear.
Before we turn to the main results, Sec. 5 gives a
complete survey of the bifurcation diagrams, for E 3

h,l

and P2

h,l, in the two-parameter family of rigid bod-

ies studied by Katok [1972]. The family is special in
that Σ̃ and Σ are identical, but still it is rich enough
to exhibit ten different types of enveloping surfaces
∂Vh,l. These surfaces are studied in the last Sec. 6.
Their bifurcation scheme is even richer than that
of P2

h,l, as the projection to ω-space tends to intro-
duce up to three singular points. These are the only
possible vectors ω on the line where the angular
momentum Aω is collinear with r.

2. Bifurcation Sets of Energy

Surfaces E3

h,l

The topological type of an energy surface E 3

h,l is

uniquely determined by its projection Uh,l = π(E3

h,l)

on the Poisson sphere S2(γ) = {|γ| = 1}, where
π : (ω, γ) 7→ γ. The compact set Uh,l ⊂ S2, called
the domain of possible configurations, consists of
those points of the unit sphere for which Ul ≤ h,
where Ul is the effective potential defined in (6).
The manifold E3

h,l is diffeomorphic to a fiber bundle

with the base Uh,l and fibers S1, where fibers over
∂Uh,l are identified as points. When ∂Uh,l contains a
critical point of Ul, the set E3

h,l is not a manifold but
a separatrix where the topology of these manifolds
changes. The corresponding pair (h, l) belongs to
the bifurcation set Σ ⊂ R

2(h, l) of the momentum
map F .

In order to find the bifurcation set Σ we use
the fact [Tatarinov, 1973] that the critical points
of the effective potential Ul are in one-to-one cor-
respondence with the relative equilibria, or steady
rotations about the vertical axis. That is, we iden-
tify all critical points corresponding to the relative
equilibria, and insert them into the integrals (2) to
obtain all critical values of the momentum map F .
From a long list of available literature we refer here
only to the three classical treatises [Ampère, 1821;
Routh, 1884; Staude, 1894], where the steady rota-
tions of a rigid body were studied under the most
general assumptions.

Without loss of generality, let the moments of
inertia be ordered according to A1 ≥ A2 ≥ A3,
and let the ri be non-negative. In the nondegenerate
case r1r2r3 6= 0, a parametric representation of the
bifurcation set may be obtained as follows. First,
conclude from γ̇ = 0 that ω = µγ with µ ∈ R.
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Next, solve the equations ω̇ = 0 with the ansatz
γi(Ai − σ) = ri/µ

2, where

σ ∈ (−∞, A3) ∪ (A3, A2) ∪ (A2, A1) ∪ (A1, ∞) .

(11)

The geometric integral 〈γ, γ〉 = 1 then leads to

µ =

(

r2
1

(A1 − σ)2
+

r2
2

(A2 − σ)2
+

r2
3

(A3 − σ)2

)
1

4

.

(12)

In the last step, insert these expressions in the en-
ergy and angular momentum integrals to obtain Σ
as parameterized by σ:

h =
1

µ2









(

3

2
A1 − σ

)

r2

1

(A1 − σ)2
+

(

3

2
A2 − σ

)

r2

2

(A2 − σ)2

+

(

3

2
A3 − σ

)

r2

3

(A3 − σ)2









,

l =
1

µ3

(

A1r
2
1

(A1 − σ)2
+

A2r
2
2

(A2 − σ)2
+

A3r
2
3

(A3 − σ)2

)

.

(13)

For each of the two signs of µ, corresponding to the
signs of l, we obtain four connected pieces of Σ. The
left picture in Fig. 8 shows an example. The piece
σ ∈ (A1, ∞) (red) gives the highest physically pos-
sible l2 at given h, or the lowest possible energy at
given l2; conversely, the piece σ ∈ (−∞, A3) (blue)
gives the relative equilibria with highest possible h
at given l2. For σ → ±∞, the limiting points are
the two absolute equilibria (h, l) = (∓|r|, 0), and
for σ = Ai + ε with ε → 0, the curves behave as
h ≈ l2/(2Ai)−ri sgn(ε). When A1 = A2 or A2 = A3,
one of the pieces disappears, and when all three Ai

are equal, Σ contains only two parts.
If the body’s center of gravity lies on one of the

principal planes of inertia, then (13) gives only three
of the four pieces of the bifurcation set (for each sign
of µ, or l). For example, if r3 = 0, we must distin-
guish the two possibilities γ3 = 0 and γ3 6= 0. In the
former case, the expressions (12) and (13), without
the last terms, are still valid, but σ runs through
only three intervals (−∞, A2)∪(A2, A1)∪(A1, ∞).
It is then convenient to introduce the parame-
ter τ via σ = (A1r2 + A2r1τ)/(r2 + r1τ), and to

eliminate µ:

h = (A2r1τ
3 + (3A2 − 2A1)r2τ

2 + (3A1 − 2A2)r1τ

+ A1r2)/(2(A1 − A2)|τ |
√

1 + τ2) ,

l =
|r2 + r1τ |1/2

|τ |1/2(1 + τ2)3/4

A1 + A2τ
2

(A1 − A2)1/2
.

(14)

where τ ∈ (−∞, −r2/r1)∪(−r2/r1, 0)∪(0, ∞). The
sign of the square root in the equation for h must
be taken as sgn((r2/r1) − τ). The fourth piece of
Σ is obtained with γ3 6= 0, and again ω = µγ but
γi(Ai − A3) = ri/µ

2. The normalization 〈γ, γ〉 = 1
implies

ω2

3
= µ2 − µ4

0
/µ2

with µ4

0
=

r2
1

(A1 − A3)2
+

r2
2

(A2 − A3)2

(15)

Using µ as a parameter in the intervals |µ| ∈
(µ0, ∞), the corresponding pieces of Σ are given
by

h =
1

2
A3µ

2 +
3

2

α

µ2
,

l = A3µ +
α

µ3
,

(16)

with

α =
r2

1

A1 − A3

+
r2

2

A2 − A3

.

Similar representations of Σ hold for r1 = 0 or
r2 = 0. An example is shown in the middle image of
Fig. 8. The red, blue and yellow branches of Σ are
given by (14) while the green piece comes from (16).

Finally, if the center of mass falls on one of
the principal axes of inertia, (13) gives only two
pieces of Σ (for each sign of µ, or l). For example,
if r2 = r3 = 0, we must distinguish three cases. The
first, γ2 = γ3 = 0, is described by (12) and (13) with
only their first terms, and σ ∈ (−∞, A1)∪(A1, ∞).
It is straightforward to see that this leads to the two
curves

h =
l2

2A1

± r1 . (17)

The second case is γ3 = 0, γ2 6= 0, and gives the
line

h =
1

2
Aiµ

2 +
3

2

αi

µ2
,

l = Aiµ +
αi

µ3
,

(18)

with

αi =
r2

1

A1 − Ai
and µ2 >

αi

r1
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Fig. 8. Bifurcation diagrams with A1 = 2, A2 = 1.5, A3 = 1 and (r1, r2, r3) = (0.3, 0.4, 0.8) (left), (0.3, 0.4, 0) (middle),
(1, 0, 0) (right). The horizontal axis is h, the vertical l; the major tick marks are separated by unity.

and i = 2. The last piece of Σ is obtained with
γ2 = 0, γ3 6= 0 and is again described by (18) with
i = 3. The right image in Fig. 8 gives an example.
The red and blue branches correspond to (17), the
yellow and green pieces to (18) with i = 2 and i = 3,
respectively.

The structure of such bifurcation diagrams
Σ was investigated in [Iacob, 1971; Katok, 1972;
Tatarinov, 1974]. However, an exhaustive study of
the full space of parameters {A1, A2, A3, r1, r2, r3}
(which may be reduced to four dimensions by ap-
propriate scaling such as |r| = 1 and det A = 1) has
not yet been presented. A complete analysis of the
two-dimensional subspace r2 = r3 = 0 was given by
Katok [1972] and will be reviewed in Sec. 5.

Each diagram divides the plane R
2(h, l) into

connected domains, or zones, inside which the topo-
logical type of E3

h,l is preserved. Morse theory

[Milnor, 1963] can be used to establish this type
for every zone of R

2(h, l)\Σ. Tatarinov [1974], in
an attempt to extend Katok’s results, investigated
various special and general cases for the parame-
ters Ai, ri. He found that connected components of
nonsingular energy surfaces E3

h,l are diffeomorphic

to one of the following manifolds: the sphere S3,
the product space S1×S2, the real projective space
RP 3, or the connected sum (S1 × S2)#(S1 × S2).
(The latter manifold has been given different names
by different authors. In [Bolsinov & Fomenko, 1999]
it is designated as K3. Arnold [1974] calls it a
“pretzel” obtained from the three-sphere S3 by at-
taching two “handles” of the form S1 × D2.) The
corresponding connected components of their pro-
jections Uh,l = π(E3

h,l) on the Poisson sphere are a

disk D2, an annulus D2\D2, a disk with two holes
D2\2D2, or the full sphere S2 [Bolsinov et al., 1996].
All these cases already occur in Katok’s special case
r2 = r3 = 0. It appears that the following conjecture
is true: there exist no more than ten isolated criti-
cal points of the effective potential on the Poisson
sphere; the above list of four types of nonsingular

energy surfaces E3

h,l is complete; any E3

h,l consists of
no more than three connected components.

As an illustration, for the three parameter sets
of Fig. 8, consider the three rows of Fig. 9. Each
picture shows level sets of the effective potential Ul.
The two equilibrium positions (for l = 0) are indi-
cated as thick dots, the north pole γ = r/|r| =: r̂

near the top or the right boundary in blue (stable
equilibrium), the south pole γ = −r̂ near the bot-
tom or the center in brown (unstable equilibrium).
Let us explain a few features.

The first row corresponds to the left picture in
Fig. 8, with three values of l. With l = 1 (left),
the potential has a minimum near the north pole, a
maximum near the south pole, and no further crit-
ical point. Hence Uh,l is either a disk or the full
sphere, the energy surface either S3 or RP 3. For
l-values slightly above the tip of the green line of
relative equilibria, the picture in the middle shows
that a saddle-node bifurcation has occurred; for en-
ergies between the level of the saddle and the local
maximum, Uh,l is an annulus and E3

h,l the product

manifold S1 × S2. The yellow line of relative equi-
libria Fig. 8 introduces another saddle-node pair,
as can be seen in the picture at right. However, the
saddle has now the higher level; hence, in the en-
ergy range enclosed by the yellow line, Uh,l consists
of two disks, the energy surface of two S3.

The second row is for r = (0.3, 0.4, 0). The se-
quence of changes, as l increases, is similar as in
the first row. The difference is the symmetry with
respect to γ3 → −γ3, and the fact that the two
holes of the Uh,l-annulus close simultaneously, at the
green relative equilibrium line.

The third row shows the case r = (1, 0, 0)
which possesses two symmetries. There is a small
range of l-values, near the cusp of the green line,
where the potential allows Uh,l to be a disk with
two holes; the energy surface is then of type (S1 ×
S2)#(S1 × S2) (second image from left). At higher
values of l (second image from right), the maximum
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Fig. 9. Level sets of the potential Ul for the parameters of Fig. 8. The right boundary of this projection of the entire Poisson
sphere is to be identified with the left boundary. Upper row: r = (0.3, 0.4, 0.8); left: l = 1, middle: l = 2.29, right: l = 3.
Second row: r = (0.3, 0.4, 0); left: l = 0.5, middle: l = 2, right: l = 3. Third row: r = (1, 0, 0); from left to right: l = 1,
l = 1.85, l = 2.5 l = 3.5.

at the south pole turns into a saddle point, and
the only possibilities for Uh,l are disk, annulus, full
sphere. Finally, when the yellow relative equilibrium
line appears, the south pole becomes a relative mini-
mum, and the sequence for Uh,l, as energy increases,
is disk, two disks, annulus, full sphere.

3. Hess Equations and Enveloping

Surface

The traditional use of projections Uh,l = π(E3

h,l) ⊂
S2(γ) for a classification of the energy surfaces nat-
urally suggests the question on how the correspond-
ing projections Vh,l = p(E3

h,l) ⊂ R
3(ω) look like,

where p : (ω, γ) 7→ ω projects to the body-fixed
space of angular velocities. From a physical point of
view the angular velocity ω contains more impor-
tant information about the motion than the unit
vector γ of the direction of gravity. In this connec-
tion it may suffice to recall Poinsot’s geometric in-
terpretation of the motion in terms of a body-fixed
axoid carrying the locus of angular velocities (the
polhode) rolling along a surface which carries the
corresponding locus in inertial space (the herpol-

hode); the point of contact determines the angular
velocity both in the space-fixed and the body-fixed
system [Whittaker, 1964; Arnold, 1974].

To find the projection Vh,l we must express the
Euler–Poisson equations on a given integral surface
E3

h,l in terms of ω only. This was in fact done by

Hess [Hess, 1890; Golubev, 1953] who eliminated γ

from the system (1) with the help of the integrals
(2) and derived several new versions of the dynam-
ical equations. One form of these equations is par-
ticularly useful for our purposes. Suppose that the
vectors Aω and r are not collinear for all times, and
decompose the vector γ in the following way:

γ = ζ1Aω + ζ2r + ζ3Aω × r . (19)

Using the integrals H, L, I, we find the coefficients

ζ1 =
|r|2l − (T − h)〈Aω, r〉

|Aω × r|2
,

ζ2 =
(T − h)|Aω|2 − 〈Aω, r〉l

|Aω × r|2
,

ζ3 =

√
f

|Aω × r|2

(20)
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where

T =
1

2
〈Aω, ω〉 ,

f = |Aω × r|2 − |(T − h)Aω − lr|2 .

(21)

Elementary transformations allow us to write f(ω)
as a polynomial of the sixth order in the three vari-
ables ωi:

f = (|Aω|2 − l2)(|r|2 − (T − h)2)

− [〈Aω, r〉 − (T − h)l]2

= −T 2|Aω|2 + 2hT |Aω|2 + 2lT 〈Aω, r〉

+ |Aω|2(|r|2 − h2) − 〈Aω, r〉2

− 2hl〈Aω, r〉 − l2|r|2 . (22)

Substituting (19) in the first equation of (1), we
obtain the vector form of the Hess equations:

Aω̇ = Aω ×ω + ζ1r×Aω + ζ3r× (Aω × r) . (23)

The equation does not contain γ. It describes the
dynamics of the angular velocity ω and the angular
momentum Aω in a body-fixed basis. Kharlamov

proved [1965] that the function f(ω)−
1

2 serves as
an integrating factor for Eq. (23), hence one ad-
ditional integral without explicit time dependence,
if it exists, suffices to reduce (23) to quadratures
[Golubev, 1953]. In any case, the solution of (23)
together with (19) can be used to reduce the ϕ-
Eq. (5) to a quadrature without involving the γ’s.

The function f(ω) is closely connected to the
projection Vh,l = p(E3

h,l) of the energy surface to the

space R
3(ω) of angular velocities. Namely, a point

ω belongs to Vh,l if and only if there exists a real
set (γ1, γ2, γ3), satisfying the three first integrals.
The boundary of this set is given by the condition

D(H, L, I)

D(γ1, γ2, γ3)
= 0 (24)

which leads to the equality

F := 〈r, Aω × γ〉 = 0 . (25)

Now we may use the Hess method to eliminate γ

and find that F = 0 reduces to f(ω) = 0 in the
space R

3(ω). Thus the domain of accessible veloci-
ties Vh,l is bounded by the closed two-dimensional
set

∂Vh,l = {f(ω) = 0} ⊂ R
3(ω) (26)

which we call the enveloping surface. The projec-
tions of the phase space trajectories correspond-
ing to fixed values (h, l) fill in the closed domain

Vh,l = {f(ω) ≥ 0} ⊂ R
3(ω). It follows from the

equality (19) that each interior point of the set Vh,l

has two and only two pre-images on the surface E 3

h,l.
They differ by the sign of the coefficient ζ3.

Note that the equality

1

2

d

dt
|Aω|2 =

√

f(ω) , (27)

follows directly from (23); it is known as one of Hess’
equations. Any trajectory — also called hodograph
— of the angular velocity in the set Vh,l becomes a
tangent to the enveloping surface ∂Vh,l when |Aω|
assumes a local extremum. If the trajectory belongs
entirely to the surface ∂Vh,l, then, in accordance
with (27), the modulus of the angular momentum
preserves its initial value. It is known that there are
just four cases with |Aω| = const: the Euler case
r = 0 where f(ω) = 0 reduces to the equation of
the ellipsoid T = h; the case of steady rotations;
finally, some particular cases of the Lagrange and
Hess solutions, when the rigid body performs pre-
cessional motion around the vertical axis [Gorr &
Iljukhin, 1974].

4. Topology of the Surfaces P2

h,l

Before we study the enveloping surfaces ∂Vh,l ⊂
R

3(ω), let us turn our attention to the somewhat
simpler auxiliary two-dimensional surfaces

P2

h,l = {H = h, L = l, I = 1, F = 0}

⊂ E3

h,l ⊂ R
6(ω, γ) , (28)

from which ∂Vh,l is obtained by the projection p.
Because of the additional restriction F = 0, the sur-
faces P2

h,l have a richer bifurcation scheme than E 3

h,l.
This section determines the classification of topo-
logically distinct types of these surfaces, in their
dependence on parameters and integral constants.

As usual, the critical points of the map F1 =
H × L : M4 → R

2(h, l), where M 4 is the surface
{I = 1, F = 0} ⊂ R

6(ω, γ), are obtained from
the condition rank(dF1) < 2 or from the equivalent
condition

µ1

∂H

∂(ω, γ)
+ µ2

∂L

∂(ω, γ)
+ µ3

∂F

∂(ω, γ)

+ µ4

∂I

∂(ω, γ)
= 0 , (29)
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where µi are certain real coefficients. The deriva-
tives by ω and γ give, respectively, the two
equations

µ1ω + µ2γ + µ3γ × r = 0 ,

µ2Aω − µ3Aω × r + 2µ4γ = µ1r .
(30)

There exist three possible variants of solutions
of (30):

(i) Let µ4 6= 0. If the vectors Aω and r are not
collinear, then by comparing the second equation
with F = 0, we find µ3 = 0. This means that the
corresponding family of critical points is determined
by the three integrals H, L, I only. Thus, the bifur-
cation set Σ of the momentum map F = H × L is
part of the bifurcation set of F1. The critical points
of F always belong to a surface P2

h,l.
All other critical points and values of the map

F1 are found with the assumption Aω = λr; the re-
quirement that the linear Eqs. (30) be solvable for
the µi leads to this condition.

(ii) Let µ1 = µ2 = µ4 = 0, µ3 6= 0. From Eq. (29)
we obtain ∂F/∂(ω, γ) = 0 or Aω × r = γ × r = 0,
i.e. the vectors Aω, r, γ are collinear at a certain
instant of time. Then the integrals L and I deter-
mine λ = ±l/|r|, γ = ±r/|r|, and with H = h it
follows that the critical values belong to the curves

h =
l2〈A−1r, r〉

2|r|2 ∓ |r| . (31)

These curves contain the equilibrium points (h, l) =
(∓|r|, 0) where they are tangent to the curves (13).
(In the special case r2 = r3 = 0 they are identical
with the curves (17) of relative equilibria.)

(iii) Let µ4 = 0 and µ1µ2µ3 6= 0. The correspond-
ing family of critical points is determined by the
three functions H, L, F and does not depend on
the integral I. From the second equation of (30) it
follows that the vectors Aω, r are collinear and that
λ = µ1/µ2. Computing the scalar product of r and
γ with the first equation of (30) leads to the two
conditions

λ2〈A−1r, r〉 + 〈r, γ〉 = 0 ,

λ2〈A−1r, γ〉 + 1 = 0 .
(32)

Nonempty intersections of the planes (32) with
the Poisson sphere allow us to obtain two criti-
cal points for every critical value. Combining (32)
with the expressions (2) we find l = −λ3〈A−1r, r〉,

h = 3

2
λ2〈A−1r, r〉, and the curve of critical values

8h3 = 27l2〈A−1r, r〉

with h-range
3〈A−1r, r〉
2|A−1r| < h <

3

2
|r| .

(33)

This piece of the bifurcation set of P2

h,l disappears
if all moments of inertia are equal or if two of the
ri vanish; then there exist critical points of cases
(i) and (ii) only. Near the upper end h = 3

2
|r| of

its range, the curve (33) connects to the curve (31),
with l2 = |r|3/〈A−1r, r〉. Near the lower end it joins
the piece σ ∈ (A1, ∞) of (13). An example is shown
in the right part of Fig. 10 where curve (33) is the
left boundary of the tiny black zone; it ends on the
curve (31) at the upper white dot, and at the lower
white dot it is tangent to the curve (14). The contin-
uation of (33) down to (h, l) = (0, 0) will be given
an interpretation in Sec. 6, see Eq. (49).

All critical points on P2

h,l of the map F1 =

H ×L : M4 → R
2(h, l) have now been determined,

and we have identified all corresponding critical val-
ues of the first integrals. The bifurcation set Σ̃ of
the surfaces P2

h,l consists not only of Σ, the set cor-
responding to relative equilibria, but in addition to
the union of the curves (31) and (33).

Before we discuss the interpretation of these ex-
tra bifurcation lines, we establish an important con-
nection between P2

h,l and its projection Ũh,l to the
Poisson sphere which does not necessarily cover the
entire energetically accessible region Uh,l. Rather we
have the following

Proposition 4.1. The projection π : (ω, γ) 7→ γ

maps the surface P2

h,l into the domain Ũh,l ⊂ Uh,l

on the Poisson sphere S2(γ). In local coordinates,
this domain is defined by

Ũh,l = {Ũl(γ) ≤ h} ⊂ S2 , (34)

where

Ũl(γ) =
l2〈A(γ × r), γ × r〉

2〈Aγ × A(γ × r), γ × (γ × r)〉 − 〈r, γ〉 .

(35)

The surface P2

h,l is a singular fiber bundle over

Ũh,l, where the fiber over γ ∈ Ũh,l is

(i) a point S0 if γ ∈ ∂Ũh,l

(ii) a circle S1 if γ = ±r/|r| =: ±r̂ 6∈ ∂Uh,l

(iii) two points 2S0 otherwise.

Proof. To find the relationship between the points of
the surface P2

h,l and the points of its image π(P2

h,l)
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on the Poisson sphere, fix the vector γ and consider
first the case γ × r =: u 6= 0. Then the map π|P2

h,l

on fibers is determined by the following formula:

Aω =
u× (Aγ × Au)l

〈Aγ × Au, γ × u〉

±
√

2 det A(γ × u)

√

2(h − Ũl)(γ)
√

〈Aγ × Au, γ × u〉
,

(36)

where

Ũl =
l2〈Au, u〉

2〈Aγ × Au, γ × u〉 − 〈r, γ〉 . (37)

Equation (36) may be verified immediately by sub-
stitution in the expressions for H, L, F . Each point
of the sphere at which the inequalities Ũl(γ) < h
and γ × r 6= 0 are fulfilled, has exactly two pre-
images on P2

h,l. Boundary points at which Ũl(γ) = h

have only one pre-image S0 on P2

h,l.

In the alternative case γ = ±r̂, the fiber in P2

h,l
is a topological circle formed by the intersection of
an ellipsoid with a plane (the integral levels H = h
and L = l). Finally, if γ belongs to the boundary
of the domain of possible configurations ∂Uh,l then
this circle collapses into a point. �

The topological type of the surface P2

h,l is
uniquely determined by two factors: the structure
of the domain Ũh,l ⊂ S2 and the location of the
poles γ = ±r̂ with respect to this domain. Let us
call γ = r̂ the “north pole”, and γ = −r̂ the “south
pole” of the Poisson sphere. The north pole corre-
sponds to the stable, the south pole to the unstable
equilibrium position of the body. The topology of
the boundary ∂Ũh,l varies across the curves of Σ,
together with the change of type of ∂Uh,l, and — as
will be discussed in connection with Fig. 12 — at the
curve (33). The curves (31), on the other hand, indi-
cate a change in the number of poles in the interior
of Ũh,l. Thus Proposition 4.1 implies that the topo-

logical type of P2

h,l changes at all values (h, l) ∈ Σ̃.
For illustration, Figs. 10–12 exhibit an exam-

ple from the Grioli family [1947], i.e. r1

√
A3 − A2 =

r2

√
A1 − A3 with r2

1
+ r2

2
= 1 and r3 = 0. The left

part of Fig. 10 shows the bifurcations sets Σ and
Σ̃. The thick red, yellow and blue curves are given
by (14), the thick green curve is from (16); these
four curves are the set Σ. The two brown lines are
the curves (31); the upper one just below the thick
red line of stable relative equilibria, the lower one

Fig. 10. (Left) Bifurcation diagram for (A1, A2, A3) =
(2, 1, 1.1) and (r1, r2, r3) = (0.94868, 0.31623, 0). The
curves are identified in the text. (Right) Schematic repre-
sentation of the right part of Fig. 11.

Fig. 11. (Left) Color code for the regions of different topo-
logical type of P2

h,l, with the same parameters as in Fig. 10.
(Right) Blow-up of the tiny rectangle near h = 1.5.

almost indistinguishably below the blue line — up
to values of (h, l) near (1.5, 1.348) where it crosses
over to the neighborhood of the yellow line. The de-
tails of this crossing over are shown in the blow-ups
(at right) of the tiny rectangles in Figs. 10 and 11.
The scenario involves the curve (33) which is the
arc connecting the two white dots, to the left of the
black zone. The continuation of curve (33) down to
the point (h, l) = (0, 0) is shown in magenta color
for reasons discussed in Sec. 6.

In the left part of Fig. 11 we use a color code to
identify the topologies of E3

h,l and P2

h,l in the regular

zones defined by Σ̃. The energy surface is S3 in four
regions with different types of P2

h,l. Using the nota-

tion M2

i for an oriented two-manifold with genus i,
we have P2

h,l of types S2 = M2

0
(pale red, between

the thick red and the upper brown line), T 2 = M2
1

(bright red), M 2
2

(magenta, to the right of the lower
brown line, between the blue and yellow lines of rel-
ative equilibria), and M 2

3
(black, only visible in the

schematic drawing in the right part of Fig. 10).
The yellow and green lines enclose two zones

of different energy surfaces. In the upper part E 3

h,l

consists of two disjoint S3; in one of them P2

h,l is

always T 2, in the other it changes from S2 in the
darker yellow region (between the upper yellow and
the brown line) to T 2 in the pale yellow region. In
the thin lower part between the yellow and green
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Fig. 12. The neighborhood of the south pole γ = −r̂ (black dot) on the Poisson sphere, for five pairs of (h, l) taken from
the right part of Fig. 11. The deep blue ellipse is not covered by Uh,l, brown is the part of Uh,l which does not belong to Ũh,l.
From left to right: (h, l) = (1.473, 1.313), (1.47357, 1.312922), (1.472, 1.3105), (1.4772, 1.317), (1.4652, 1.301).

lines, E3

h,l is S1 × S2; the surface P2

h,l is M2
2

to left

of line (31) and M 2

3
to its right. Finally, below the

blue line, the energy surface is RP 3, with P2

h,l of

type T 2 in the sky blue region (the main part of
the blue zone), and M 2

2
in the dark azure (visible

only in the right part of Fig. 10).
How do we obtain these assertions? Let us first

ignore the complications introduced by curve (33).
Then for each connected piece of Ũh,l ⊂ Uh,l we
must consider the location of the poles γ = ±r̂. If
they are both outside of Uh,l, then Ũh,l is homeo-
morphic to Uh,l, and if the latter is a disk with zero,
one or two holes, then Proposition 4.1 tells us that
the surface P2

h,l is, respectively, S2, T 2 or M2

2
. Now,

in a small strip below the thick red bifurcation line,
the north pole lies outside Uh,l; the axis of rotation
in the stable relative equilibrium is not in the direc-
tion of r̂. The north pole enters Uh,l when Ul(r̂) = h
which happens along the parabola

h =
l2

2〈Ar̂, r̂〉 − |r| . (38)

But this lies above the upper brown curve (31)
because

〈Ar̂, r̂〉〈A−1r̂, r̂〉 ≥ 1 . (39)

On the other hand, when γ = ±r̂ we have F = 0,
hence poles inside Uh,l belong to Ũh,l as well: As
long as we stay above curve (31), γ = r̂ remains a
point of the boundary ∂Ũh,l. In fact, the boundary
has a self-intersection at that point, a singularity of
the projection ∂Ũh,l, not of P2

h,l.

A topological change of P2

h,l occurs when the
map F1 has a critical point. This happens at the
upper curve (31) where the north pole enters the
interior of Ũh,l. From then on, P2

h,l has an addi-
tional handle because two inner points are replaced
by a connecting circle S1. The surface is oriented
because it divides its component of E 3

h,l into two dis-

joint pieces, corresponding to the two signs of (27).
Therefore, S2 turns into T 2.

In other examples, the topology of Ũh,l may be
that of an annulus, or a disk with a hole. As long as
no pole is in its interior, P2

h,l is a torus T 2, but when

r̂ (or −r̂) enters, it is a manifold M 2

2
of genus 2.

Similarly, if Ũh,l were a disk with two holes and no
pole inside, P2

h,l would be a manifold M 2

2
(we have

no example for that and believe it does not exist).
However, with one interior pole, it would be a man-
ifold M 2

3
(and there are examples of that, e.g. in the

Kovalevskaya case).
The interpretation of the lower brown

curve (31) is that when it is crossed from left to
right, the south pole γ = r̂ enters the interior of
Ũh,l. This adds another handle to P2

h,l, see Table 1
for a summary. Its first three rows describe the pos-
sible cases without the complications added by the
existence of a curve (33). (The question mark at the
upper right entry refers to our conjecture that this
case does not exist.) The first column refers to Ũh,l

being the entire Poisson sphere; it must then con-
tain both poles. Without them, P2

h,l would consist

of two separate spheres S2, but the S1 pre-images of
the two poles connect these spheres by two handles
and thereby generate a torus T 2.

The last row in Table 1 adds what happens
when the curve (33) enters the game. Together
with other bifurcation lines it forms a zone where
the genus of P2

h,l is further increased. We believe
that the highest possible genus that can be ob-
tained this way is 5. As an example, we give the
set of parameters (A1, A2, A3) = (4, 2.99, 1.02),
r = (

√
0.5,

√
0.5, 0), (h, l) = (1.49229, 1.83563). In

the case of Figs. 10 and 11 the extra zone introduced
by the curve (33) is the black triangle that it forms
with the curves (31) and (14). It lies inside the re-
gion where the energy surface is a three-sphere S3.
Hence, P2

h,l is a manifold M 2

3
of genus 3.

The mechanism associated with the curve (33)
is illustrated in Fig. 12 for the example in Figs. 10
and 11 where it occurs at the transition of E 3

h,l from

S3 to RP 3. The five pictures show the neighborhood
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Table 1. Possible types of the topology of P2

h,l, depending on topology of the

energy surface E3

h,l (four columns) and the nature of its projection Ũh,l to the
Poisson sphere in relation to the poles ±r̂ (four rows).

Topology of E3

h,l

RP 3 S3 S1 × S2 (S1 × S2)#(S1 × S2)

Nature of Uh,l

Nature of Ũh,l ↓ S2 D2 S2\2D2 S2\3D2

no pole inside − S2 T 2 M2
2 ?

r̂ inside − T 2 M2

2 M2

3

r̂ and −r̂ inside T 2 M2
2 M2

3 M2
4

two separate holes at −r̂ M2

2 M2

3 M2

4 M2

5

of the south pole γ = −r̂ of the Poisson sphere, for
five different values (h, l). The four images on left
are cases where E3

h,l is S3, the image on right is a

case where E3

h,l is RP 3. The bright red color shows

Ũh,l, brown is the difference Uh,l\Ũh,l; the dark blue
ellipse is an inaccessible part of the Poisson sphere.
The south pole is shown as a black dot. It is a
boundary point of Ũh,l in the three images on left
which are all for (h, l) to the left of line (31). The
leftmost picture corresponds to (h, l) from the red
region in Fig. 11; P2

h,l is of type T 2 as the north

pole lies inside Ũh,l and the south pole is a bound-
ary point. The second image from left is for (h, l) on
line (33); we see how the brown region is pinched at
two points. Next, in the third image, where (h, l) is
from the tiny black region in Fig. 11, the south pole
is still a boundary point of Ũh,l, but now it separates

the two interior pieces of Uh,l\Ũh,l forming a figure
eight. Hence P2

h,l has two additional handles and is

of type M 2
3
. The last red image is for (h, l) from

the magenta region in Fig. 11; here figure eight has
disappeared (two handles less), but the south pole
has entered the interior of Ũh,l (one handle more),
so the topology is of type M 2

2
.

The blue image on right is for the dark azure
region in Fig. 11 where the energy surface is RP 3.
The set Ũh,l has two holes on the Poisson sphere,
separated by the boundary point −r̂, so the topol-
ogy of P2

h,l is again M 2

2
. Crossing the line (31) into

the sky blue region of Fig. 11, the holes disappear,
but the south pole becomes an inner point, so the
topology becomes that of T 2.

So what happens along the curve (33)? A single
hole of Ũh,l (left image in Fig. 12) is splashed into

three (middle image), increasing the genus of P 2

h,l
by two. The south pole γ = −r̂ is an essential part
of this scenario, hence it appears that the transition
can only take place from the second to the fourth
row of Table 1.

A comprehensive survey on such bifurcation
schemes of surfaces P2

h,l — for all possible values
of parameters Ai and ri — has not been worked
out yet, but it is unlikely that types other than
those discussed in this paper will be found. Curves
(31) and (33) have the same structure for all values
of the parameters, and the singular points of P 2

h,l
have been determined here in full generality. Hence
it is hard if not impossible to conceive of a situation
where P2

h,l would be of type M 2
6
.

The following section reviews Katok’s analysis
[1972] of the special cases r2 = r3 = 0 and relates
it to the properties of the surfaces P2

h,l.

5. The Katok Cases r2 = r3 = 0

Katok [1972] gave a complete list of bifurcation di-
agrams for the special cases r2 = r3 = 0. Without
loss of generality we may take r1 = 1 and scale
the moments of inertia with A1 so that (α, β) :=
(A2/A1, A3/A1) are the two relevant parameters of
the system. The physical restrictions Ai + Aj ≥ Ak

determine the boundaries of the diagram in Fig. 13:
the line α + β = 1 corresponds to planar mass dis-
tribution in the body-fixed (2, 3)-plane; the lines
β = ±1 + α represent planar mass distribution in
the (1, 2)- and (1, 3)-planes, respectively. Bodies
symmetric with respect to the 1, 2 and 3 axes are,
respectively, located on the lines α = β, α = 1, and
β = 1. No immediate physical interpretation can
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Fig. 13. Katok’s partition of the (α, β)-plane into seven
color coded regions, corresponding to different types of bi-
furcation diagrams. For later reference, the regions are called
K1-red, K2-orange, K3-yellow, K4-green, K5-light blue, K6-
blue, K7-violet.

be given to the further subdivision induced by the
lines α = 3/4, β = 3/4, as well as

α =
9 − 8β

(5 − 4β)2
, β ∈

(

β0,
3

4

)

,

and β =
9 − 8α

(5 − 4α)2
, α ∈

(

α0,
3

4

)

,

(40)

where α0 = β0 ≈ 0.4647. (The last line is not men-
tioned in [Katok, 1972]; it is obtained from the con-
ditions that both curves (18), with i = 2 and i = 3,
have cusps, and that the starting point of the curve
with i = 3, i.e. µ2 = α3/r1, coincides with the
intersection of the curve (18), i = 2, and (17).)
Altogether there are seven regions in parameter
space with bifurcation diagrams of different type.
We shall denote them as K1,. . . , K7, see the cap-
tion of Fig. 13.

The seven types of bifurcation diagrams are
shown in Figs. 14 and 15. In each diagram the
lines of relative equilibria (17) and (18) delimit re-
gions with different topology of E 3

h,l and P2

h,l. The

lines (31) are identical with (17), and line (33) dis-
appears. (But notice we have included line (49),
to be explained in the following section; it marks
the distinction between ν(∂Vh,l) = 1 or 3 in the

first entry of the last column.) Hence the sets Ũh,l

are homeomorphic to Uh,l in all cases, and for
each type of energy surface E3

h,l there is only one

type of P2

h,l. Katok numbered them from I to VII;
we use a color code to exhibit this classification.
Table 2 summarizes the results. The fourth column
gives the topological type of P2

h,l which implies a
further refinement of Katok’s types II and III.

Notice that K1 is the only parameter region
where all seven types occur. We take the example
(1.7, 0.9, 0.86) ∈ K1 (first image in Fig. 15) to il-
lustrate the effective potential Ul(γ) on the Poisson
sphere, for different values of the angular momen-
tum l. There are eight different cases, as shown in
Fig. 16. The north pole r̂ marks the minimum of the
effective potential; its direction is indicated by the
dot on the left backside of each sphere. The south
pole −r̂ is at the right front. All images possess
symmetry with respect to reflection of the 2 and
3 axes. The colors code for the topological types
I–VII of the energy surfaces E3

h,l: when h = Ul(γ)
with γ from a region with a certain color, then we
may use Table 2 to read off the type of E 3

h,l and the

corresponding P2

h,l. (The type IV is not represented
in these images because h is then larger than the
maximum of the effective potential).

It is instructive to relate the topology of E 3

h,l

and P2

h,l to the foliation of the Poisson sphere by

level lines of Ul(γ), using the technique of Reeb
graphs [Bolsinov & Fomenko, 1999] for Morse func-
tions on the sphere. The level lines may be in-
terpreted as orbits of a Hamiltonian system with
phase space S2(γ). Representing each level line as
a point on a graph where h is the vertical coordi-
nate, we obtain the diagrams of Fig. 17. The black
graphs show how the level lines are connected. Each
branch represents a continuous family of level lines.
Lower end points correspond to local energy min-
ima, upper end points to local maxima. The north
pole is marked with a white, the south pole with
a black dot. Branch points correspond to saddles
and separatrices in the system of equipotential lines.
(The saddles come in pairs, either on the (1, 2)- or
the (1, 3)-meridians of the Poisson sphere.) Using
these Reeb graphs it is possible to construct the
corresponding Fomenko molecules, see [Bolsinov &
Fomenko, 1999].

6. Structure and Bifurcations of the

Enveloping Surfaces in ω-Space

In the preceding section we determined the struc-
ture of the surfaces P2

h,l in R
6(ω, γ). Their pro-

jections to the space of angular velocities are the
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Fig. 14. The seven types of bifurcation diagrams for r̂ = (1, 0, 0). The moments of inertia (A1, A2, A3) are the follow-
ing. Upper row: (1.7, 0.9, 0.86) ∈ K1, (1.7, 0.96, 0.86) ∈ K2, (1.0, 0.78, 0.2201) ∈ K3; middle row: the first two images are
blow-ups of the diagrams above, then (1.5, 1.8, 0.301) ∈ K4; bottom row: (1.5, 1.2, 1.126) ∈ K5, (1.0, 1.75, 0.76) ∈ K6,
(0.8, 1.1, 1.0) ∈ K7.

Fig. 15. The bifurcation diagrams for the same parameters as in Fig. 14, with color code of Table 2 for the seven different
types of energy surfaces E3

h,l.
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Fig. 16. The eight different types of effective potentials for (r1, r2, r3) = (1, 0, 0) and (A1, A2, A3) = (1.7, 0.9, 0.86) ∈ K1.
The values of the angular momentum l are, from upper left to lower right, l = 0, l = 1.68, l = 1.71, l = 1.74, l = 1.763,
l = 1.773, l = 1.86, l = 2.0. The colors correspond to those in Fig. 15.

Fig. 17. Reeb graph representation of the eight types of energy surfaces for r = (1, 0, 0) and (A1, A2, A3) = (1.7, 0.9, 0.86) ∈
K1. Each point of the graph corresponds to an equipotential line Ul(γ) = h; the energy h increases along the vertical. The
bifurcation scheme of these graphs determines the topological type of E3

h,l and P2

h,l, as indicated by the colors. The values of
l are the same as in Fig. 16.
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Table 2. The seven types of energy surfaces E3

h,l in the Katok family of rigid bodies, and the cor-

responding Poincaré surfaces of section P2

h,l. The last column gives the number of singularities of
the projections ∂Vh,l on the line where γ is collinear with l = Aω, see Sec. 6.

Color E3

h,l P2

h,l ν(∂Vh,l)

I S3 T 2 1 or 3

II S3 ∪ S3 T 2 ∪ T 2 if A2 < A1 and A3 < A1 1 and 1

S2 ∪ S2 if A2 > A1 or A3 > A1 0 and 0

III S1 × S2 M2
3 if A2 < A1 or A3 < A1 2

T 2 if A2 > A1 and A3 > A1 0

IV RP 3 T 2 2

V (S1 × S2)#(S1 × S2) M2

3 1

VI S3 ∪ S3 ∪ S3 S2 ∪ S2 ∪ T 2 0, 0 and 1

VII S3 ∪ (S1 × S2) T 2 ∪ T 2 1 and 0

enveloping surface in which we are interested,
∂Vh,l = p(P2

h,l) ⊂ R
3(ω). As mentioned in (26),

the envelopes are characterized by f(ω) = 0, hence
their singular points are given by the two conditions

f(ω) = 0 and
∂f(ω)

∂ω
= 0 . (41)

Using Eq. (22), we may write the latter condition
as

η1Aω + η2r + η3ω = 0, (42)

where

η1 = |r|2 − (T − h)2 ,

η2 = (T − h)l − 〈Aω, r〉 ,

η3 = 〈Aω, r〉l − (T − h)|Aω|2 .

(43)

Equation (42) may be read as a set of linear equa-
tions for the ηi; the matrix of coefficients has deter-
minant 〈Aω× r, ω〉. If this determinant is nonzero,
then η1 = η2 = η3 = 0 is the only solution, and
with (43) we find |Aω|2 = l2, 〈Aω, r〉 = ±|r|l. It
follows that the vector of the angular momentum
is collinear with r, Aω = λr, since |Aω × r|2 =
|Aω|2|r|2 − 〈Aω, r〉2 = 0. Notice that |Aω| = l
means l2 := |Aω|2 assumes its smallest possible
value.

On the other hand, for nontrivial solutions
ηi of (42) to exist, the determinant must vanish,
〈Aω × r, ω〉 = 0. Now there are two possibilities.

First, let η3 = 0. Then, with the help of (42), we ob-
tain again Aω = λr. The second possible situation,
Aω × r 6= 0 and η3 6= 0, will be considered below.

Consider the first possibility, where Aω and r

are collinear, i.e. ω lies on the axis with unit vector
e := A−1r/|A−1r|. Inserting Aω = λr into the first
integrals (2), we find that the coefficient λ must be
a real solution of the cubic equation

1

2
〈A−1r, r〉λ3 − hλ − l = 0 , (44)

while γ satisfies the equations

λ〈r, γ〉 = l and |γ| = 1 , (45)

i.e. it lies on the intersection of the Poisson sphere
with a plane normal to r. Depending on the number
and values of the real solutions of (44), the closed
domain Vh,l ⊂ R

3(ω) may have 0, 1, 2, or 3, but no
more than three distinct points on the e axis. These
points of intersection are singular points of the real
surface ∂Vh,l. In the generic case, the tangents to
this surface at such a singular point form a cone
since the matrix of the second partial derivatives of
f(ω) is nondegenerate.

The alternative possibility for a point of ∂Vh,l

to be singular is that Aω × r 6= 0 and η3 6= 0.
Then the decompositions γ = ζ1Aω + ζ2r and
η3ω = −η1Aω − η2r together with the simple
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identities

(T − h)f = (η1ζ2 − η2ζ1)|Aω × r|2 ,

〈Aω, r〉f = −(η2 + η3ζ1)|Aω × r|2 ,
(46)

lead to the following expressions:

ω × γ =
(h − T )f

η3|Aω × r|2
(Aω × r) = 0 ,

Aω × ω + r × γ =
〈Aω, r〉f

η3|Aω × r|2
(Aω × r) = 0 .

(47)

Hence, in this case the singular points of ∂Vh,l turn
out to be the relative equilibria of the system (1).
The change in topological type of E 3

h,l upon passage

through the bifurcation set Σ ⊂ R
2(h, l) discussed

in Sec. 2, leads to a topological change of Vh,l as
well. The steady rotations of the body around the
vertical axis correspond to singularities of the en-
veloping surface ∂Vh,l.

Disregarding these critical cases, we have the
following

Proposition 6.1. Let P2

h,l be a regular surface of

the level sets (28) and ∂Vh,l = p(P2

h,l) ⊂ R
3(ω) its

projection to the space of angular velocities. Then a
fiber in P2

h,l ⊂ E3

h,l over ω ∈ ∂Vh,l is either a circle

S1 (if ω lies on the e axis) or a point S0 (otherwise).

Proof. If the vectors Aω, r are not collinear then,
following (19), the vector γ is uniquely determined
by the formula γ = ζ1Aω + ζ2r. If, however, the
point ω ∈ ∂Vh,l lies on the e axis, then γ fulfills
(45), where the constant coefficient λ is a real solu-
tion of Eq. (44). A nonempty intersection of the unit
sphere with the plane forms a circle S1 ⊂ R

3(γ). To
prove that all points of this circle belong to the do-
main Ũh,l ⊂ Uh,l, we use λ〈r, γ〉 = l and (44) to
transform (37) into the expression

h − Ũl(γ)|S1 =
λ2〈γ × A−1r, u〉2

2〈Aγ × Au, γ × u〉 . (48)

Non-negativity of the right-hand side means that
the circle does not intersect ∂Ũh,l but may touch
it. Thus, the fiber over the given point ω ∈ ∂Vh,l

is S1. �

Let us wrap up what we can say about the
topology of the enveloping surfaces ∂Vh,l. Of course
it depends on the values (h, l) and the parameters
of the rigid body. There exist regular surfaces ∂Vh,l

which have no singular points — homeomorphic,
for example, to the sphere S2 or the torus T 2, see
Fig. 21. Then, every connected component of Vh,l

is a compact manifold with boundary. Singular sur-
faces ∂Vh,l occur at bifurcations of the energy sur-
face, but not only there. There exist zones where
for every pair of values (h, l) the enveloping sur-
face has singular points on the e-axis. The corre-
sponding connected components of Vh,l are then “al-
most” manifolds with boundary, i.e. they are com-
pact manifolds with boundary, but the boundary
∂Vh,l has 1, 2 or 3 singularities on the line Aω = λr.
All examples of Figs. 18 through 20 possess compo-
nents of this kind. We denote the number of these
singular points by ν(∂Vh,l). It can change in two
ways. First, the number of real roots of Eq. (44)
may change. This happens along the line where the
discriminant of that equation vanishes:

8h3 − 27l2〈A−1r, r〉 = 0

in the h-range 0 ≤ h ≤ 3

2
|r| .

(49)

This agrees with line (33) except for the larger h-
range. The second way for the number of singu-
lar points to change is that real solutions λ of (44)
may or may not be compatible with the inequali-
ties −|r| ≤ 〈r, γ〉 ≤ |r| which hold on the Poisson
sphere. The changes happen at the two lines

1

2
〈A−1r, r〉λ2 − h = ±|r| . (50)

Using (44) it is straightforward to see that these are
the lines (31).

The bifurcation diagram of the enveloping sur-
faces ∂Vh,l is therefore the union of Σ̃ and the
line (49). The topological type of ∂Vh,l is that of
P2

h,l except for the singularities where circles on P 2

h,l

have collapsed to points. The numbers ν(∂Vh,l) are
given in the last column of Table 2.

We formulate the main result as a theorem:

Theorem 6.2. For fixed constants (h, l) all trajec-
tories which correspond to the solutions ω = ω(t) of
the vector Eq. (23) belong to the three-dimensional
domain Vh,l = p(E3

h,l). This domain has the follow-
ing properties:

(a) an arbitrary point of Vh,l\∂Vh,l has exactly two
pre-images on the manifold E3

h,l;

(b) all singular points of the enveloping surfaces
∂Vh,l either correspond to relative equilibria or
belong to the axis with unit vector e;
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Fig. 18. Enveloping surfaces of types I: (h, l) = (1, 1) (left), I′: (h, l) = (1, 0.6) (middle), II: (h, l) = (2.5, 2.15) (right).
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Fig. 19. Enveloping surfaces of types III: (h, l) = (2, 1.8) (left), IV: (h, l) = (1.5, 0.6) (middle), V: (h, l) = (1.85, 1.705)
(right).
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Fig. 20. Enveloping surfaces of types VI: (h, l) = (1.9, 1.759) (left) and VII: (h, l) = (1.912, 1.763) (right).
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Fig. 21. Enveloping surfaces of types II′: (h, l) = (3.6, 2.8) (left) and III′: (h, l) = (3.6, 2.75) (right).
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(c) the classification of possible types of the en-
veloping surfaces ∂Vh,l is determined by the

bifurcation set Σ̃ ⊂ R
2(h, l) and the curve (49).

For illustration, Figs. 18 to 21 give a complete
survey on the types of enveloping surfaces that oc-
cur in the Katok family of rigid bodies, cf. Sec. 5.
Each individual case is represented by a column of
four images. At the top we show the Poisson sphere
S2(γ); its colored part is Ũh,l whereas the dark vi-
olet part is not covered by the projection of P2

h,l.
The three pictures below give different views of the
corresponding surface ∂Vh,l. The dot on the e = r̂

axis identifies the orientation. The bottom picture
shows the envelope with one quarter cut away; this
permits a view to the interior which is filled with
Vh,l, the domain of possible values ω. But remem-
ber each point of this interior has two pre-images
in E3

h,l, one with increasing, the other with decreas-

ing value of l2.
The first three Figs. 18 to 20 show the types

of envelopes that occur in the Katok region K1, see
Fig. 13. The parameters are A = (1.7, 0.9, 0.86)
and r = (1, 0, 0). The two cases I and I′ in Fig. 18
differ in the number ν(∂Vh,l) of singularities; to the
left of line (49) it is 1, to the right it is 3. In Fig. 21
we add the two additional possible cases for types
II and III, cf. Table 2. They are the only enveloping
surfaces without singular points. Type II′ occurs in
the Katok parameter regions K4, K6 and K7; our
choice is A = (0.8, 1.1, 0.9) ∈ K7. Type III′ occurs
only in K7; we take A = (0.8, 1.1, 1.0). The values
of (h, l) are indicated in the captions.

We add a remark on the structure induced
in E3

h,l by the pre-image p−1(∂Vh,l) = P2

h,l. Any

connected component of P2

h,l is a two-dimensional
oriented manifold which divides the corresponding
nonsingular component of E3

h,l into two oriented
manifolds with boundary. It is known that any
closed oriented three-dimensional manifold can be
presented as the disjoint union of two filled-in man-
ifolds of suitable genus, without common interior
points; i.e. it is always possible to find M, M′ ⊂ E3

h,l

such that M ∪ M′

= E3

h,l and M ∩ M′

= ∂M =

∂M′

. For example, the sphere S3 can be obtained

by pasting together two balls, up to the homeomor-
phism of their boundaries; by pasting two full tori
it is possible to obtain manifolds S3, RP 3, S1 ×S2.
Such splitting is called Heegaard splitting of genus
n, where n is the topological genus of the manifold
∂M. In the problem under consideration the sur-

face ∂M is a connected component of P2

h,l ⊂ E3

h,l.

The sets M and M′

correspond to the parts of E3

h,l

where the signs of ζ3 in (19) or of d|Aω|2/dt in (27)
are different.

The trajectories ω(t) fill in the closed domain
Vh,l and are tangent to the enveloping surface
∂Vh,l ⊂ R

3(ω). Lifted to the energy surface, this
tangency becomes a crossing-over between M and
M′

, at almost all points of P2

h,l. But the trajecto-

ries cannot all be directed to the interior of M (or
M′

). Therefore we may identify open disjoint do-
mains on P2

h,l with a different direction of the flow,

from M to M′

or vice versa. According to (27), the
function |Aω| attains a local extremum upon con-
tact with P2

h,l. So one part of P2

h,l consists of local

minima of |Aω|, the other of local maxima. We find
the separatrix from the condition d2|Aω|2/dt2 = 0.
In explicit terms, this condition reads

|γ × r|2 + 〈Aω × γ, r× ω〉 = 0. (51)

If d3|Aω|2/dt3 6= 0 at a point of this separatrix, the
trajectory, after contact with P2

h,l, returns to the

initial set M or M′

.
As mentioned in the Introduction, these obser-

vations are relevant for studying the dynamics in
terms of global Poincaré sections. The surfaces P 2

h,l
fulfill the requirement of being complete surfaces of
section, a goal which is not always easy to obtain
[Dullin & Wittek, 1995]. Their projections ∂Vh,l to
the space of angular velocities are a natural choice
for representing the motion, and we propose to use
them in comprehensive studies of rigid body dynam-
ics. The projections Ũh,l to the Poisson sphere may
also be used, but then to obtain a unique Poincaré
mapping, only one of the two sheets associated with
the two signs in Eq. (36) must be taken.
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