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ANGULAR VELOCITY OF THE KOVALEVSKAYA TOP
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Images of the Liouville tori and three-dimensional isoenergetic surfaces are constructed in movable space of angular ve-
locities and all possible types of these invariant sets are classified. The characteristic properties of the angular momentum
and the angular velocity of the Kovalevskaya top are indicated.

Special Kovalevskaya Edition

1. Introduction

The Euler problem on motion of a heavy rigid body about a fixed point requires to integrate the
system of differential equations

Aω̇ = Aω ×ω + r× ν , ν̇ = ν × ω (1.1)

with the three known integrals

H = 1
2
〈Aω,ω〉 − 〈r, ν〉 = h , G = 〈Aω, ν〉 = g , I = 〈ν, ν〉 = 1 , (1.2)

where A = diag(A1, A2, A3), ω is an angular velocity of the body in a movable frame, ν is a vertical
unit vector and r is a vector directed from the fixed point to the center of gravity of the body. The
integrating factor of the system (1.1) is constant, therefore it is enough to have one additional integral
non dependent explicitly on time to reduce the problem to quadratures. L. Euler indicated the first
case of integrability of the dynamical equations (1.1). Later L. Poinsot found a simple and obvious
geometric representation of the motion for the Euler case: the rigid body rotates by inertia around
the fixed point so that the inertia ellipsoid, invariable connected with the body, rolls without sliding
on a fixed plane which is perpendicular to the angular momentum. The angular velocity of the body
and the radius vector of the tangency point of the ellipsoid with the plane of rolling lay on the same
straight line and have proportional modules. The set of trajectories of the Euler equations fills the
ellipsoid which is a two-dimensional surface of an energy level at a fixed value of the constant h [2].

In general, the common level surface of the first integrals

Q3
h,g = {H = h , G = g , I = 1} ⊂ R6(ω, ν)

is a three-dimensional subset of a phase space which is invariant under a phase flow of the system (1.1).
The methods of study of mechanical systems with symmetry developed by S. Smale [18] are effectively
applied for description of bifurcations and topology of the surfaces Q3

h,g. The topological type of Q3
h,g

is uniquely determined by “domain of a possible motion”, i. e. by projection of an isoenergetic surface
Uh,g = π(Q3

h,g) on the Poisson sphere S2 = {|ν| = 1}. In fact, the manifold Q3
h,g is diffeomorphic to a

fiber bundle with the base Uh,g and the fiber S1 at which the fibers above ∂Uh,g are identified at points.
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The type of these manifolds varies while passing through a bifurcation set Σ ⊂ R2(h, g) consisting of
critical values of a map H × G : S2 ×R3 → R2(h, g). The topological type of Q3

h,g is the same for

all points from one of the connected domains R2(h, g)\Σ. A connected component of a nonsingular
surface Q3

h,g is diffeomorphic to one of the following manifolds: RP 3, S3, S1×S2, (S1×S2)#(S1×S2).

Critical points of the map H×G : S2×R3 → R2(h, g) are relative equilibria of the system (1.1):

ν = const , ω =
gν

〈Aν, ν〉 = const , g2(Aν × ν) + (r× ν)〈Aν, ν〉2 = 0 . (1.3)

Bifurcation curves on the plane R2(h, g) may be parametrically represented by the equations

h = 1
µ2


(

3
2
A1 − σ

)
r2

1

(A1 − σ)2
+

(
3
2
A2 − σ

)
r2

2
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+
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3
2
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)
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3
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 ,

g = 1
µ3

(
A1r

2
1

(A1 − σ)2
+

A2r
2
2

(A2 − σ)2
+

A3r
2
3

(A3 − σ)2

)
,

(1.4)

where µ =

(
r2

1

(A1 − σ)2
+

r2
2

(A2 − σ)2
+

r2
3

(A3 − σ)2

)1
4
. If A1 > A2 > A3, then σ ∈ (−∞, A3) ∪ (A3, A2)∪

∪(A2, A1) ∪ (A1,∞). The detailed description of the bifurcation diagrams and topology of the mani-
folds Q3

h,g are presented by A. Iacob [10], S. B. Katok [11], Ya. V. Tatarinov [19] etc.

The additional integral K decomposes Q3
h,g into two-dimensional surfaces of a level

Jh,k,g = {H = h , K = k , G = g , I = 1} ⊂ R6(ω, ν) .

It is well known due to Liouville [2] that nonsingular compact surfaces Jh,k,g are a union of two-
dimensional tori filled with almost-periodic trajectories. There exists a problem of a qualitative
description of a topological arrangement and bifurcations of Liouville tori on the surface Q3

h,g.
M. P. Kharlamov [12] studied a phase topology of the known integrable cases of rigid body dy-
namics. He constructed a bifurcation set B ⊂ R3(h, k, g) consisting of critical values of the map
H ×K × G : S2 ×R3 → R3(h, k, g) and found a structure of critical and regular surfaces Jh,k,g for
each known case. A. T. Fomenko and his students studied the Liouville foliation of isoenergetic sur-
faces Q3

h,g up to continuous and smooth trajectorial equivalences. They classified and described the
topology of many integrable problems of classical and modern Hamiltonian mechanics [3, 17] using
molecules coding a structure of foliations on Qh,g. These topological results can be confirmed to
demonstrate an evolution of invariant tori in a phase space of the system by immediate computer
simulation [4, 5].

In this work one of the basic kinematic characteristics of a rotating rigid body, i. e. its angular
velocity is studied. For this purpose the invariant sets, in particular images of the Liouville tori and
surfaces Q3

h,g, are constructed in space R3(ω) and all possible types of these sets are classified. The
self-intersections of trajectories (hodographs of the angular velocity and the angular momentum) are
investigated. The family of curves on the Poisson sphere, which illustrates the Liouville foliation
on Q3

h,g for the Kovalevskaya top [15], is constructed. We also note papers [6, 7, 14] where the angular
velocity of other integrable tops is investigated.

2. Integrable case of S. V. Kovalevskaya

We subject parameters describing a mass distribution in a body to the following conditions: A1 =
= A2 = 2A3, r2 = r3 = 0. Then the Euler–Poisson equations admit the Kovalevskaya integral

K = (ω2
1 − ω2

2 + ν1)2 + (2ω1ω2 + ν2)2 = k . (2.1)

Without loss of generality it is possible to assume g > 0 since the equations (1.1) and their first
integrals are invariant under transformation (ω1, ω2, ν3, g) 7→ (−ω1,−ω2,−ν3,−g).

108 REGULAR AND CHAOTIC DYNAMICS, V. 5, No 1, 2000



ANGULAR VELOCITY OF THE KOVALEVSKAYA TOP �

The integrals (1.2), (2.1) and auxiliary real-valued variables

s1 = 2ω2
1 −

c1 −
√
c2

1 + c2
2

4ω2
2

, s2 = 2ω2
1 −

c1 +
√
c2

1 + c2
2

4ω2
2

, (2.2)

where

c1 = ReR(ω1 + iω2) , c2 = ImR(ω1 + iω2) , R(x) = −x4 + 2hx2 + 2gx+ 1− k ,

allowed S. V. Kovalevskaya [15] to reduce the equations (1.1) to quadratures. N. E. Zhukovskii con-
structed level lines of two functions s1, s2 on a plane R2(ω1, ω2) in his geometric research of this
integrable case [20]. The set of curves si = const forms a system of curvilinear orthogonal coordinates
on the plane R2(ω1, ω2), which simplifies the study of an image of a projection of the vector ω on
an equatorial plane of an inertia ellipsoid. The image of a surface Jh,k,g on R2(ω1, ω2) is the domain
bounded by curves

s1 = e5 , s1 = e4 , s2 = e4 , (2.3)

where e5 = h +
√
k, e4 = h−

√
k. The analysis of areas filled with values of the variables ω1, ω2 was

carried out by G. G. Appelrot [1]. It allowed him to study modifications of the considered domains
and select periodic solutions which can be noted as si = const in the Kovalevskaya variables, and to
find conditions of existence of asymptotic solutions of the equations (1.1). This work served as the
base for studying phase topology of this problem [12]. The critical values of the integrals (1.2), (2.1)
belong to a bifurcation set

B =
4⋃
i=1

Bi ⊂ R3(h, k, g) , B1 = {h, k, g : k = 0} , B2 = {h, k, g : g2 = 2(h+
√
k)} ,

B3 = {h, k, g : g2 = 2(h−
√
k)} , B4 =

{
h, k, g : 27

4
g2 = h(9− 9k + h2)± (3k − 3 + h2)

3
2
}
,

(2.4)

which represents a part of a surface of the multiple roots of the fifth degree polynomial included in
the Kovalevskaya’s quadrature formulas.

We use (2.2) to write the equations (2.3) in the form

ω2
2 =
√
k − ω2

1 − ge−1
5 ω1 ± e−1

5

√(
e5 −

g2

2

)
(e5 − 2ω2

1) , (2.5)

ω2
2 = −

√
k − ω2

1 − ge−1
4 ω1 ± e−1

4

√(
e4 −

g2

2

)
(e4 − 2ω2

1) . (2.6)

For fixed values (h, k, g) the relations (2.5), (2.6) allow us to build domains on the plane R2(ω1, ω2)
where real motions evolves. In a typical case a connected component of an image of a manifold Jh,k,g
is diffeomorphic to a ring or rectangle in dependence on position of the triple (h, k, g) in a subspace
Ωi ⊂ R3\B [1, 12] (see Fig. 1).

Four distinct points of an invariant manifold Jh,k,g are projected, at each interior point of domains
shaded in Fig. 1. The appropriate points of a surface Ph,k,g = p(Jh,k,g), where p : (ω, ν) 7→ ω, are not
always distinct and can pairwise coincide.

3. Singular surfaces Ph,k,g

By eliminating the components νi in the integrals (1.2), (2.1) we obtain an equation

F = (c2
1 + c2

2)ω4
3 + c3ω

2
3 + c2

4 = 0 , (3.1)
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Fig. 1

where again c1 = ReR(ω1 + iω2), c2 = ImR(ω1 + iω2) and multipliers c3, c4 are

c3 = −1
2
c1c

2
2ω
−2
2 + 4c2

2(2ω2
1 − h) + 8c1ω

2
2 [(2ω2

1 − h)2 − k] , c4 = 1
4
ω−2

2 c2
2 + 4ω2

2 [(2ω2
1 − h)2 − k] .

The two-dimensional real surface Ph,k,g = p(Jh,k,g) ⊂ R3(ω) is determined as a point set which
coordinates satisfy (3.1). Let us note that the equation (3.1) was first obtained by V. M. Starzhinskii.
The points of the surface Ph,k,g at which equalities

F (ω) = 0 , gradF (ω) = 0 (3.2)

are fulfilled will be singular. One can immediately obtain from (3.2) a set

N =
3⋃
i=1

Ni ⊂ R3(ω) , N1 = {ω : c2 = 0 , ω2 6= 0 , c1ω
2
3 + c4 = 0} ,

N2 = {ω : ω2 = 0 , c1ω
2
3 − c4 = 0} , N3 = {ω : ω3 = 0 , c4 = 0} ,

consisted of singular points of the surface Ph,k,g . At some points of the set N the intersection of distinct
components of Ph,k,g takes place, on the other hand the self-intersection takes place also on N . The
second case is more interesting since it leads to self-intersections of trajectories in R3(ω). It is possible
to study a structure and mutual position of the curves Ni by its projections on the plane R2(ω1, ω2).
The possible variants of planar curves c2 = 0 and c4 = 0 for ω2 > 0 are shown in Fig. 2. We can
obtain a case ω2 < 0 using the mirror map of Fig. 2 to the lower half-plane.

Fig. 2

4. Classification of singular points

The points of the set N ⊂ R3(ω) can be divided into four basic types. We refer points of
self-intersection of the surface Ph,k,g to the first type. All of them are joined in double lines.
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At each such point the tangents to the surface Ph,k,g form two real planes. We refer the sim-
ple branching point, is the top of a “cross cup” (see Fig. 3 a), to the second type. Images of

Fig. 3

the considered branching points belong to the curve (2.5), (2.6) in the
plane R2(ω1, ω2). A singular point of the third type is represented in
Fig. 3 b. Two sheets of the surface Ph,k,g intersect with each other along
two double lines at this point. Such points belong to a set N1 ∩ N3

or (provided g = 0) to the intersection of two different branches of
the curve N1. Six double lines and four sheets of the surface Ph,k,g
intersect at singular points of the fourth type. All these points are
located on the axis Oω1 since they belong to a set N1 ∩N2 ∩N3. The
singular set of the surface Ph,k,g can be schematically presented as a
graph, tops of which correspond to the points of the second, third and fourth types, and the double
lines are represented by edges of the graph between the appropriate tops.

Fig. 4 Fig. 5

The equations of planar curves (2.5), (2.6) and c2 = 0, c4 = 0 allow us to study and to classify
possible positions of projections of the components Ni and images of the manifolds Jh,k,g on R2(ω1, ω2).
The equations of surfaces in the space R3(h, k, g), obtained by such a classification, have the following
form:

C1 =
{
h, k, g : g2 = 1

2
(h2 − k)(h−

√
k)
}
,

C2 =
{
h, k, g : g2 = 1

2
(h2 − k)(h+

√
k)
}
,

C3 =
{
h, k, g : g2 = 16

27
h3
}
,

C4 =
{
h, k, g : g = ±[2

√
k −

√
1 + 2

√
k(h+

√
k)]

√
2(h+

√
k)
}
,

C5 =
{
h, k, g : g = [2

√
k ±

√
1− 2

√
k(h−

√
k)]

√
2(h−

√
k)
}
,

C6 =
{
h, k, g : h =

√
k + 3ω2

1 −
√

1− 3ω4
1 , g = −4ω3

1, ω1 ∈
[
− 1√

2
, 0
]}
.

(4.1)

On the plane R2(ω1, ω2) the images of the surfaces Ph,k,g , which are described by the equation (3.1),
can look like types, represented in Fig. 4, 5 (dashed lines correspond to solutions of the equation
c4 = 0 and solid lines to those of c2 = 0). If a connected component of an image is diffeomorphic to a
rectangle, there are more than twenty various variants of projections and only six of them are shown
in Fig. 5.

Theorem 1. Each connected component of a surface Ph,k,g = p(Jh,k,g) possesses a nonempty
subset of singular points N . The qualitative reorganizations of Ph,k,g are connected with a modification
of a structure of the set N . The topological structure of N varies only on the surfaces (2.4), (4.1).
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5. Portraits of invariant tori

Some types of the surfaces Ph,k,g are shown in Fig. 6. Explicit expressions [15] of the components ωi
via the auxiliary variables s1, s2 were used for their construction. The more detailed qualitative
representation of a behaviour of solutions can be obtained by analysis of rotation numbers of tangent
vector fields on invariant tori of the Kovalevskaya problem equal a ratio of periods of a hyperelliptic
integral [16]. In a nonresonance case the closure of a trajectory, i. e. a solution of system (1.1) in R3(ω)
coincides with one of components of the surface Ph,k,g.

Fig. 6

Let the constants h, g be fixed. The equation (3.1) yields the dependence on k for a one-parameter
family of the surfaces Ph,k,g. Is there exist a surface which touches some surface Ph,k,g in each its point?

A necessary criterion for the enveloping surface is the system of equalities F = ∂F
∂k

= 0, from which

we really can obtain the equation of a two-dimensional surface in the space R3(ω). We shall not limit
the deduction of the equation of such a surface only by the Kovalevskaya case and we shall consider
a general case.

6. The Hess equations

Let us assume that Aω and r are noncollinear vectors and let us present the vector ν as a sum

ν = a1Aω + a2r + a3(Aω × r) . (6.1)

Then we can derive the following coefficients from the integrals H,G, I

a1 =

[
|r|2g + (h− T )〈Aω, r〉

]
|Aω × r|2

, a2 =

[
(T − h)|Aω|2 − 〈Aω, r〉g

]
|Aω × r|2

, a3 =

√
f

|Aω × r|2
,

where

T = 1
2
〈Aω,ω〉 , f = |Aω × r|2 − |(h− T )Aω + gr|2 .

Elementary transformations allow us to write f as a polynomial of the sixth degree in three variables,
which are components of the angular velocity vector:

f = (|Aω|2 − g2)(|r|2− (T − h)2)− [〈Aω, r〉 − (T − h)g]2 =

= − T 2|Aω|2 + 2hT |Aω|2 + 2gT 〈Aω, r〉+ |Aω|2(|r|2− h2)−
− 〈Aω, r〉2− 2hg〈Aω, r〉 − g2|r|2 . (6.2)
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Substituting (6.1) into the first equation of (1.1), we obtain the vector form of the Hess equations [9]

Aω̇ = Aω ×ω + a1(r× Aω) + a3(r× (Aω × r)) . (6.3)

The equation (6.3) does not contain ν and describes dynamics of the vectors ω, Aω in a frame rigidly

connected with the body. It is easy to show that the function f(ω)
−1

2 serves as an integrating factor
of the equation (6.3).

7. Enveloping surface ∂Vh,g

We again consider a projection p : (ω, ν) 7→ ω. The point (ω1, ω2, ω3) belongs to the image Vh,g =
= p(Q3

h,g) provided that there exists a real solution (ν1, ν2, ν3) satisfying the three first integrals. We
exclude νi from a condition

D(H, G, I)

D(ν1, ν2, ν3)
= 0 (7.1)

and obtain an equation of a two-dimensional surface bounding the domain Vh,g. Further we name
∂Vh,g = {f(ω) = 0} ⊂ R3(ω) as the enveloping surface. The images of phase trajectories of the
system (1.1), corresponding to fixed constants (h, g), fill in the closed domain Vh,g = {f(ω) > 0} ⊂
⊂ R3(ω). In accordance with (6.1) each interior point of the set Vh,g ⊂ R3(ω) has two pre-images on
the surface Q3

h,g which differ only by sign of coefficient a3 in the expression (6.1). The right member of
the equation (6.3) can vanish only on the boundary ∂Vh,g. The equation f(ω) = 0 becomes essentially
simpler for r = 0 and reduces to the equation of the ellipsoid T = h. In the Euler case this ellipsoid
is filled with phase trajectories on a fixed level of an energy. Let us note the known equality

1
2
d
dt
|Aω|2 =

√
f(ω) , (7.2)

which follows from (6.3). Any trajectory (hodograph of an angular velocity in the body axes), belong-
ing to the set Vh,g, tangents the enveloping surface ∂Vh,g in that instant, when |Aω| attains its local
extremum along the trajectory. If the trajectory, i. e. hodograph, entirely belongs to the surface ∂Vh,g,
then according to the equality (7.2) the module of the vector of angular momentum preserves the ini-
tial value. In the problem under consideration all cases when |Aω| = const are known. Besides the
Euler solution and the steady rotations (1.3), the module of angular momentum is constant only in
some special cases of solutions of Lagrange and Hess, where the body performs precession motions
around a vertical axis [8].

8. Classification of ∂Vh,g

The topology of the enveloping surfaces ∂Vh,g depends on values of the parameters (h, g). There exist
the surfaces ∂Vh,g without singular points (for example, diffeomorphic to sphere S2 or torus T 2). If
there are singular points on the real surface ∂Vh,g, then we can obtain them from the conditions

f(ω) = 0 , gradf(ω) = 0 .

On the bifurcation set Σ ⊂ R2(h, g) the enveloping surface ∂Vh,g always has singular points corre-
sponded to steady rotations of the body (i. e. the relative equilibria (1.3) of the system (1.1)). The
modification of a topological type of Q3

h,g at passage of the bifurcation set (1.4) reduces to a modifi-

cation of a type of Vh,g. If the surface Q3
h,g consists of several connected components, then also Vh,g is

a union of nonintersecting sets.
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Moreover, the enveloping surface ∂Vh,g has a singular point, if the vectors Aω and r become
collinear during the motion of the body. Then the equality Aω = λr is fulfilled. It can be derived
from the first integrals that the factor λ is the real solution of a cubic equation

1
2
〈A−1r, r〉λ3− hλ− g = 0 , (8.1)

and the vector ν satisfies to the equations λ〈r, ν〉 = g, |ν| = 1. The important property is that in the

space R3(ω) there exists an axis with a unit vector l = A−1r
|A−1r|

which intersects the closed domain Vh,g

no more than at three points. These points ω = λA−1r = const are singular points of the enveloping
surface ∂Vh,g. P. V. Kharlamov [13] introduced a special frame, the first axis of which passes through a
center of gravity of the body. He obtained a suitable differential equations for components of angular
momentum in that base. It follows from the above mentioned that at the fixed constant (h, g) the
trajectories, i. e. the hodograph of angular momentum, can repeatedly intersect the axis carrying a
center of gravity, but no more than at three fixed points of this axis. All points of self-intersection of
trajectories in the open domain Vh,g\∂Vh,g can be only double.

Fig. 7

Let us obtain curves by dividing the plane R2(h, g) into domains, inside which a number of
singular points of the enveloping surface ∂Vh,g preserves. We write the curve of multiple solutions of
the equation (8.1) in the form

8h3 − 27g2〈A−1r, r〉 = 0 . (8.2)

Using the inequalities −|r| 6 〈r, ν〉 6 |r| one can obtain the following restrictions

−|r| 6
[

1
2
〈A−1r, r〉λ2− h

]
6 |r| , (8.3)

for the parameter λ. From (8.1), (8.3) we obtain the equations of dividing curves in the form

g2〈A−1r, r〉 − 2|r|2(h± |r|) = 0 . (8.4)

Thus, the curves (1.4), (8.2), (8.4) divide the plane R2(h, g) into subregions with qualitative various
types of the surfaces ∂Vh,g. Some of these surfaces are shown in Fig. 7. Here as well as in the
Kovalevskaya case the center of gravity lays on one of principal axis of inertia, and the singular points
of a surface ∂Vh,g are located on the same axis.
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Fig. 8

Theorem 2. All integral trajectories, which for the fixed constants (h, g) correspond to solutions
ω = ω(t) of the vector equation (6.3), belong to the three-dimensional surface Vh,g = p(Q3

h,g). An

arbitrary point of the set Vh,g\∂Vh,g has two pre-images on the manifold Q3
h,g. Singularities of the

real surface ∂Vh,g either correspond to the relative equilibria (1.3), or belong to the axis with the unit
vector l. The classification of possible types of the surfaces ∂Vh,g is determined by the curves (8.2), (8.4)
and the bifurcation set Σ ⊂ R2(h, g).

9. Set of characteristics on ∂Vh,g

The completely integrable dynamical system on Q3
h,g admits an additional integral K(ω, ν) = k which

decomposes this invariant manifold Q3
h,g on connected two-dimensional components Jh,k,g . The en-

veloping surface ∂Vh,g tangents some component of the set Ph,k,g = p(Jh,k,g) dependent on a param-
eter k at each point. The curve, along which ∂Vh,g comes into contact with a fixed surface Ph,k,g , is
known as a characteristic of the given set. The characteristics form on ∂Vh,g a set of lines dependent
on k. We obtain the equation of characteristics on ∂Vh,g by substitution (6.1) and a3 = 0 into an
integral:

K̃(ω) = K(ω, ν)|ν=ν0(ω) = k , ν0 = a1Aω + a2r . (9.1)

For fixed constants (h, k, g) the points of sequential tangencies of a trajectory of the equation (6.3)
with the surface ∂Vh,g is placed on closed curves in the Euclidean space R3(ω), formed with joint

solutions of equations f(ω) = 0, K̃(ω) = k. The one-parameter family of characteristics is also
convenient to study and to classify on the Poisson sphere. We can write an equation like (9.1) for an
sphere S2 = {|ν| = 1}:

K̂(ν) = K(ω, ν)|ω=ω0(ν) = k , Aω0 = b1ν + b2r , (9.2)

where multipliers b1,2 satisfy the following system of algebraic equations:

b1 + b2〈ν, r〉 = g ,

b2
2

[
〈ν, r〉2〈A−1ν, ν〉+ 〈A−1r, r〉 − 2〈ν, r〉〈A−1ν, r〉

]
+

+2gb2

[
〈A−1ν, r〉 − 〈ν, r〉〈A−1ν, ν〉

]
+ g2〈A−1ν, ν〉 − 2〈ν, r〉 − 2h = 0 .

(9.3)
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From (9.3) it follows, that an arbitrary point of the Poisson sphere not lying on an axis carrying
the center of gravity of a body, has no more than two pre-images ω0 = b1A

−1ν + b2A
−1r on ∂Vh,g.

We take two copies of the sphere S2 and construct level lines K̂(ν) = k on each of them. The results
of computations are shown in Fig. 8 for five various pairs (h, g) of the Kovalevskaya case. Curves on
the sphere illustrate a structure of the Liouville foliation of the isoenergetic surface Vh,g.

The author is grateful to A. T. Fomenko, P. H. Richter and H. R. Dullin for valuable discussions
and advices.
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